Natural Porous Carbon Derived from Popped Rice as Anode Materials for Lithium-Ion Batteries

被引:22
作者
Boonprachai, Ruttapol [1 ]
Autthawong, Thanapat [1 ,2 ]
Namsar, Orapim [1 ]
Yodbunork, Chawin [1 ]
Yodying, Waewwow [1 ]
Sarakonsri, Thapanee [1 ,2 ,3 ]
机构
[1] Chiang Mai Univ, Dept Chem, Fac Sci, Chiang Mai 50200, Thailand
[2] Chiang Mai Univ, Mat Sci Res Ctr, Fac Sci, Chiang Mai 50200, Thailand
[3] Chiang Mai Univ, Ctr Excellence Innovat Chem PERCH CIC, Chiang Mai 50200, Thailand
关键词
porous carbon; graphite; anode material; popped rice; lithium-ion batteries; ACTIVATED CARBON; HIGH-PERFORMANCE; SURFACE-AREA; LI; BIOMASS; STORAGE; GRAPHITE; FACILE; GRAPHITIZATION; CARBONIZATION;
D O I
10.3390/cryst12020223
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
Popped rice carbons (PC) were derived from popped rice by using a facile and low-cost technique. PC was then activated by different kinds of activating agents, such as potassium hydroxide (KOH), zinc chloride (ZnCl2), iron (III) chloride (FeCl3), and magnesium (Mg), in order to increase the number of pores and specific surface area. The phase formation of porous activated carbon (PAC) products after the activation process suggested that all samples showed mainly graphitic, amorphous carbon, or nanocrystalline graphitic carbon. Microstructure observations showed the interconnected macropore in all samples. Moreover, additional micropores and mesopores were also found in all PAC products. The PAC, which was activated by KOH (PAC-KOH), possessed the largest surface area and pore volume. This contributed to excellent electrochemical performance, as evidenced by the highest capacity value (383 mAh g(-1) for 150 cycles at a current density of 100 mA g(-1)). In addition, the preparation used in this work was very simple and cost-effective, as compared to the graphite preparation. Experimental results demonstrated that the PAC architectures from natural popped rice, which were activated by an optimal agent, are promising materials for use as anodes in LIBs.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Insights into the Impact of Activators on the 'Catalytic' Graphitization to Design Anode Materials for Lithium Ion Batteries
    Hanhart, Vanessa
    Frankenstein, Lars
    Ramirez-Rico, Joaquin
    Siozios, Vassilios
    Winter, Martin
    Gomez-Martin, Aurora
    Placke, Tobias
    CHEMELECTROCHEM, 2022, 9 (21)
  • [42] Preparation of carbon nanoparticles from electrolysis of molten carbonates and use as anode materials in lithium-ion batteries
    Groult, H
    Kaplan, B
    Lantelme, F
    Komaba, S
    Kumagai, N
    Yashiro, H
    Nakajima, T
    Simon, B
    Barhoun, A
    SOLID STATE IONICS, 2006, 177 (9-10) : 869 - 875
  • [43] Red phosphorus encapsulated in porous carbon derived from cigarette filter solid waste as a promising anode material for lithium-ion batteries
    Qian Wang
    Peichao Lian
    Bo Wang
    Yongwei Tang
    Honghong Liu
    Yi Mei
    Ionics, 2018, 24 : 3393 - 3403
  • [44] Synthesis and Electrochemical Performance of Silica/Porous Lignin Carbon Composites as Anode Materials for Lithium-ion Batteries
    Li Changqing
    Yang Dongjie
    Xi Yuebin
    Qin Yanlin
    Qiu Xueqing
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2018, 39 (12): : 2725 - 2733
  • [45] Biomass carbon derived from sisal fiber as anode material for lithium-ion batteries
    Yu, Xinliang
    Zhang, Kaiyou
    Tian, Ning
    Qin, Aimiao
    Liao, Lei
    Du, Rui
    Wei, Chun
    MATERIALS LETTERS, 2015, 142 : 193 - 196
  • [46] Amide-Functionalized Porous Carbonaceous Anode Materials for Lithium-Ion Batteries
    Lee, Dong-Geon
    Yim, Taeeun
    Woo, Sang-Gil
    Yu, Ji-Sang
    CHEMPHYSCHEM, 2019, 20 (05) : 752 - 756
  • [47] Silicon@Natural Nitrogen-Doped Biomass Carbon Composites Derived from "Silicon Tofu" as Green and Efficient Anode Materials for Lithium-Ion Batteries
    Xu, Xuejiao
    Wu, Fuzhong
    Yang, Wanliang
    Dai, Xinyi
    Wang, Tianhao
    Zhou, Jiawang
    Wang, Jing
    Guo, Dan
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2021, 9 (39) : 13215 - 13224
  • [48] Assembly of core-shell structured porous carbon-graphene composites as anode materials for lithium-ion batteries
    Guo, Rong
    Zhao, Li
    Yue, Wenbo
    ELECTROCHIMICA ACTA, 2015, 152 : 338 - 344
  • [49] Electrochemical Performance of Graphite/Silicon/Carbon Composites as Anode Materials for Lithium-ion Batteries
    Jo, Yoon Ji
    Lee, Jong Dae
    KOREAN CHEMICAL ENGINEERING RESEARCH, 2018, 56 (03): : 320 - 326
  • [50] Carbon-coated ZnO Nanocomposite Microspheres as Anode Materials for Lithium-ion Batteries
    Fan, Yingqiang
    Chen, Xiujuan
    Xu, Dan
    JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY-MATERIALS SCIENCE EDITION, 2023, 38 (03): : 490 - 495