Electrochemical performance of nanostructured La0.6Sr0.4CoO3-δ and Sm0.5Sr0.5CoO3-δ cathodes for IT-SOFCs

被引:48
作者
Acuna, L. M. [2 ]
Pena-Martinez, J. [3 ]
Marrero-Lopez, D. [3 ]
Fuentes, R. O. [2 ]
Nunez, P. [3 ]
Lamas, D. G. [1 ,2 ]
机构
[1] Univ Natl Comahue, Fac Ingn, Lab Caracterizac Mat, RA-8300 Neuquen, Argentina
[2] CITEFA CONICET, CINSO Ctr Invest Solidos, RA-1603 Villa Martelli, Buenos Aires, Argentina
[3] Univ La Laguna, Dept Quim Inorgan, E-38200 San Cristobal la Laguna, Tenerife, Spain
关键词
Nanocrystalline materials; Intermediate-temperature solid-oxide fuel cells; Cathode; Mixed ionic-electronic conductor; Cobaltite; OXIDE FUEL-CELLS; STRUCTURED SM0.5SR0.5COO3-DELTA; LANTHANUM COBALTITE; IONIC-CONDUCTIVITY; TEMPERATURE SOFCS; ELECTRODES; MECHANISM;
D O I
10.1016/j.jpowsour.2011.07.067
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The electrochemical performance of nanostructured cathodes for IT-SOFCs based on perovskite-type mixed ionic/electronic conductors (MIECs) is investigated. Different compounds (La0.6Sr0.4CoO3-delta and Sm0.5Sr0.5CoO3-delta) and synthesis methods (freeze-drying and citrate complexation) were evaluated. These materials exhibited excellent performance (area-specific resistance values in the range of 0.05-0.20 Omega cm(2) for an operating temperature of 700 degrees C), which improved with decreasing grain size. This performance can be attributed to the high specific surface area of these nanostructured cathodes, thus dramatically increasing the number of active sites for the oxygen reduction reaction. Under these conditions, the electrochemical properties are mainly controlled by oxide ion diffusion through the MIEC cathode, which becomes faster with decreasing grain size. (C) 2011 Published by Elsevier B.V.
引用
收藏
页码:9276 / 9283
页数:8
相关论文
共 25 条
[1]   Mechanism and kinetics of oxygen reduction on porous La1-xSrxCoO3-δ electrodes [J].
Adler, SB .
SOLID STATE IONICS, 1998, 111 (1-2) :125-134
[2]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377
[3]   Cathode reaction mechanism of porous-structured Sm0.5Sr0.5CoO3-δ and Sm0.5Sr0.5CoO3-δ/Sm0.2Ce0.8O1.9 for solid oxide fuel cells [J].
Baek, Seung-Wook ;
Bae, Joongmyeon ;
Yoo, Young-Sung .
JOURNAL OF POWER SOURCES, 2009, 193 (02) :431-440
[4]   High performance nanostructured IT-SOFC cathodes prepared by novel chemical method [J].
Baque, Laura ;
Caneiro, Alberto ;
Moreno, Mario S. ;
Serquis, Adriana .
ELECTROCHEMISTRY COMMUNICATIONS, 2008, 10 (12) :1905-1908
[5]   High-performance solid-oxide fuel cell cathodes based on cobaltite nanotubes [J].
Bellino, Martin G. ;
Sacanell, Joaquin G. ;
Lamas, Diego G. ;
Leyva, Ana G. ;
Walsoe de Reca, Noemi E. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2007, 129 (11) :3066-+
[6]   Enhanced ionic conductivity in nanostructured, heavily doped ceria ceramics [J].
Bellino, MG ;
Lamas, DG ;
de Reca, NEW .
ADVANCED FUNCTIONAL MATERIALS, 2006, 16 (01) :107-113
[7]   Structural, morphological and electrical properties of Gd0.1Ce0.9O1.95 prepared by a citrate complexation method [J].
Fuentes, Rodolfo O. ;
Baker, Richard T. .
JOURNAL OF POWER SOURCES, 2009, 186 (02) :268-277
[8]   Synthesis of Nanocrystalline CeO2-ZrO2 Solid Solutions by a Citrate Complexation Route: A Thermochemical and Structural Study [J].
Fuentes, Rodolfo O. ;
Baker, Richard T. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (03) :914-924
[9]   On the synthesis and performance of flame-made nanoscale La0.6Sr0.4CoO3-δ and its influence on the application as an intermediate temperature solid oxide fuel cell cathode [J].
Heel, Andre ;
Holtappels, Peter ;
Graule, Thomas .
JOURNAL OF POWER SOURCES, 2010, 195 (19) :6709-6718
[10]   A low-operating-temperature solid oxide fuel cell in hydrocarbon-air mixtures [J].
Hibino, T ;
Hashimoto, A ;
Inoue, T ;
Tokuno, J ;
Yoshida, S ;
Sano, M .
SCIENCE, 2000, 288 (5473) :2031-2033