A minimal model for wind- and mixing-driven overturning: threshold behavior for both driving mechanisms

被引:16
作者
Fuerst, Johannes J. [1 ,2 ]
Levermann, Anders [1 ,2 ]
机构
[1] Univ Potsdam, Inst Phys, Potsdam, Germany
[2] Univ Potsdam, Potsdam Inst Climate Impact Res, Potsdam, Germany
关键词
Meridional overturning circulation; Northern sinking; Critical freshwater threshold; Overturning sensitivity; Conceptual model; Stability; Atlantic meridional overturning circulation; Pycnocline depth; Driving mechanism; ATLANTIC THERMOHALINE CIRCULATION; MULTIPLE EQUILIBRIA; OCEAN CIRCULATION; CONVECTION; STABILITY; TRANSPORT; CLIMATE; VARIABILITY; SENSITIVITY; HYSTERESIS;
D O I
10.1007/s00382-011-1003-7
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
We present a minimal conceptual model for the Atlantic meridional overturning circulation which incorporates the advection of salinity and the basic dynamics of the oceanic pycnocline. Four tracer transport processes following Gnanadesikan in Science 283(5410):2077-2079, (1999) allow for a dynamical adjustment of the oceanic pycnocline which defines the vertical extent of a mid-latitudinal box. At the same time the model captures the salt-advection feedback (Stommel in Tellus 13(2):224-230, (1961)). Due to its simplicity the model can be solved analytically in the purely wind- and purely mixing-driven cases. We find the possibility of abrupt transition in response to surface freshwater forcing in both cases even though the circulations are very different in physics and geometry. This analytical approach also provides expressions for the critical freshwater input marking the change in the dynamics of the system. Our analysis shows that including the pycnocline dynamics in a salt-advection model causes a decrease in the freshwater sensitivity of its northern sinking up to a threshold at which the circulation breaks down. Compared to previous studies the model is restricted to the essential ingredients. Still, it exhibits a rich behavior which reaches beyond the scope of this study and might be used as a paradigm for the qualitative behaviour of the Atlantic overturning in the discussion of driving mechanisms.
引用
收藏
页码:239 / 260
页数:22
相关论文
共 63 条
[31]  
2
[32]  
MAROTZKE J, 1991, J PHYS OCEANOGR, V21, P1372, DOI 10.1175/1520-0485(1991)021<1372:MEOTGT>2.0.CO
[33]  
2
[34]  
Marotzke J., 1988, Tellus, Series A (Dynamic Meteorology and Oceanography), V40A, P162, DOI 10.1111/j.1600-0870.1988.tb00414.x
[35]  
Marotzke J, 1997, J PHYS OCEANOGR, V27, P1713, DOI 10.1175/1520-0485(1997)027<1713:BMATDO>2.0.CO
[36]  
2
[37]   A decomposition of the Atlantic meridional overturning circulation into physical components using its sensitivity to vertical diffusivity [J].
Mignot, Juliette ;
Levermann, Anders ;
Griesel, Alexa .
JOURNAL OF PHYSICAL OCEANOGRAPHY, 2006, 36 (04) :636-650
[38]  
Montoya M, 2005, CLIM DYNAM, V25, P237, DOI 10.1007/s00382-005-0044-l
[39]   Abyssal recipes II: energetics of tidal and wind mixing [J].
Munk, W ;
Wunsch, C .
DEEP-SEA RESEARCH PART I-OCEANOGRAPHIC RESEARCH PAPERS, 1998, 45 (12) :1977-2010
[40]   Does the Atlantic meridional overturning cell really have more than one stable steady state? [J].
Nof, Doron ;
Van Gorder, Stephen ;
de Boer, Agatha .
DEEP-SEA RESEARCH PART I-OCEANOGRAPHIC RESEARCH PAPERS, 2007, 54 (11) :2005-2021