Multisensor Data Fusion in an Integrated Tracking System for Endoscopic Surgery

被引:65
|
作者
Ren, Hongliang [1 ]
Rank, Denis [2 ]
Merdes, Martin [2 ]
Stallkamp, Jan [2 ]
Kazanzides, Peter [3 ]
机构
[1] Johns Hopkins Univ, Dept Biomed Engn, Baltimore, MD 21218 USA
[2] Fraunhofer Inst Mfg Engn & Automat, D-70504 Stuttgart, Germany
[3] Johns Hopkins Univ, Dept Comp Sci, Baltimore, MD 21218 USA
来源
IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE | 2012年 / 16卷 / 01期
关键词
Electromagnetic tracking (EMT); inertial measurement unit (IMU); multisensor data fusion (MSDF); surgical navigation; ROBOT; LOCALIZATION; CALIBRATION;
D O I
10.1109/TITB.2011.2164088
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Surgical planning and navigation systems are vital for minimally invasive endoscopic surgeries but it is challenging to track the position and orientation of intrabody surgical instruments in these procedures. In order to address this problem, we propose a tracking system including multiple-sensor integration and data fusion. The proposed tracking approach is free of the constraints of line-of-sight, less subject to environmental distortion, and with higher update rate. By incorporating electromagnetic and inertial sensors, the system yields continuous 6-DOF information. Based on a system dynamic model and estimation theories, a new multisensor fusion algorithm, cascade orientation and position-estimation algorithm, is proposed for the integrated tracking device. The experimental results show that the proposed algorithms achieve accurate orientation and position tracking with robustness.
引用
收藏
页码:106 / 111
页数:6
相关论文
共 50 条
  • [1] A multisensor data fusion-based target tracking system
    Mort, N
    Prajitno, P
    IEEE ICIT' 02: 2002 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY, VOLS I AND II, PROCEEDINGS, 2002, : 427 - 432
  • [2] Integrated environment for automotive multisensor data fusion system.
    Lagreze, A
    Genon-Catalot, D
    Pontois, J
    Deloof, P
    INTELLIGENT TRANSPORTATION SYSTEMS, 1998, 3207 : 155 - 162
  • [3] Multisensor data fusion for manoeuvring target tracking
    Chen, YM
    Huang, HC
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2001, 32 (02) : 205 - 214
  • [4] Multisensor Data Fusion for UAV Detection and Tracking
    Jovanoska, Snezhana
    Broetje, Martina
    Koch, Wolfgang
    2018 19TH INTERNATIONAL RADAR SYMPOSIUM (IRS), 2018,
  • [5] A practical tracking algorithm of multisensor data fusion
    Dai, YP
    Chen, J
    Hirasawa, K
    Wu, YH
    SICE 2000: PROCEEDINGS OF THE 39TH SICE ANNUAL CONFERENCE, INTERNATIONAL SESSION PAPERS, 2000, : 247 - 250
  • [6] Fusion architectures for intelligent integrated processing of multisensor data in target surveillance and tracking applications
    Sundareshan, MK
    FUSION'98: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON MULTISOURCE-MULTISENSOR INFORMATION FUSION, VOLS 1 AND 2, 1998, : 73 - 77
  • [7] An Integrated Model for Robust Multisensor Data Fusion
    Shen, Bo
    Liu, Yun
    Fu, Jun-Song
    SENSORS, 2014, 14 (10): : 19669 - 19686
  • [8] Approaches to multisensor data fusion in target tracking: A survey
    Smith, Duncan
    Singh, Sameer
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2006, 18 (12) : 1696 - 1710
  • [9] Target recognition and tracking based on multisensor data fusion
    Yang, Jie
    Lu, Zhenggang
    Huang, Xin
    Shanghai Jiaotong Daxue Xuebao/Journal of Shanghai Jiaotong University, 1999, 33 (09): : 1107 - 1110
  • [10] Optimal fusion estimation covariance of multisensor data fusion on tracking problem
    Jin, XB
    Sun, YX
    PROCEEDINGS OF THE 2002 IEEE INTERNATIONAL CONFERENCE ON CONTROL APPLICATIONS, VOLS 1 & 2, 2002, : 1288 - 1289