Extended stability problem for two fuzzy number-valued functional equations

被引:0
作者
EL-Fassi, Iz-iddine [1 ]
机构
[1] Sidi Mohamed Ben Abdellah Univ, Fac Sci & Tech, Dept Math, BP 2202, Fes, Morocco
关键词
Stability; Functional equation; Fuzzy number space; Fuzzy analysis; Hausdorff distance;
D O I
10.1080/09720502.2021.1978687
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this manuscript, we focus on the fuzzy numbers related to the theory of functional equations. Using the metric defined on a fuzzy number space, we prove the Hyers-Ulam-Rassias stability (briefly, HUR-stability) of the following fuzzy number-valued functional equations f(alpha x + beta y/2) + f (alpha x + beta y/2) = alpha f(x) and f(Sigma(m )(i=1)a(i)x(i)) = Sigma(m)(i=1) r(i)f(x(i)) where alpha, beta,a(1), ..., a(m), r(1), ..., r(m) are fixed real numbers. The results obtained here are generalizations and extensions of the corresponding results in [10, 15, 24] in some senses.
引用
收藏
页码:1609 / 1620
页数:12
相关论文
共 26 条
[11]   Arrow, Hausdorff, and ambiguities in the choice of preferred states in complex systems [J].
Erber, T. ;
Frank, M. J. .
JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2019, 22 (02) :129-137
[12]   A GENERALIZATION OF THE HYERS-ULAM-RASSIAS STABILITY OF APPROXIMATELY ADDITIVE MAPPINGS [J].
GAVRUTA, P .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1994, 184 (03) :431-436
[13]   Stability of Cauchy-Jensen type functional equation in generalized fuzzy normed spaces [J].
Gordji, M. Eshaghi ;
Khodaei, H. ;
Kamyar, M. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (08) :2950-2960
[14]   On the stability of the linear functional equation [J].
Hyers, DH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1941, 27 :222-224
[15]  
Jung SM, 2011, SPRINGER SER OPTIM A, V48, P1, DOI 10.1007/978-1-4419-9637-4
[16]   Hyers-Ulam stability of additive set-valued functional equations [J].
Lu, Gang ;
Park, Choonkil .
APPLIED MATHEMATICS LETTERS, 2011, 24 (08) :1312-1316
[17]   Fuzzy versions of Hyers-Ulam-Rassias theorem [J].
Mirmostafaee, Alireza Kamel ;
Moslehian, Mohammad Sal .
FUZZY SETS AND SYSTEMS, 2008, 159 (06) :720-729
[18]   Fuzzy stability of the Jensen functional equation [J].
Mirmostafolee, A. K. ;
Mirzavaziri, A. ;
Moslehian, M. S. .
FUZZY SETS AND SYSTEMS, 2008, 159 (06) :730-738
[19]   ON THE BEHAVIOR OF MAPPINGS WHICH DO NOT SATISFY HYERS-ULAM STABILITY [J].
RASSIAS, TM ;
SEMRL, P .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 114 (04) :989-993
[20]   STABILITY OF LINEAR MAPPING IN BANACH-SPACES [J].
RASSIAS, TM .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1978, 72 (02) :297-280