CryoCiM: Cryogenic compute-in-memory based on the quantum anomalous Hall effect

被引:12
作者
Alam, Shamiul [1 ]
Islam, Md Mazharul [1 ]
Hossain, Md Shafayat [2 ]
Jaiswal, Akhilesh [3 ]
Aziz, Ahmedullah [1 ]
机构
[1] Univ Tennessee, Dept Elect Engn & Comp Sci, Knoxville, TN 37996 USA
[2] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
[3] Univ Southern Calif, Dept Elect & Comp Engn, Los Angeles, CA 90089 USA
关键词
CIRCUITS; SRAM; RRAM;
D O I
10.1063/5.0092169
中图分类号
O59 [应用物理学];
学科分类号
摘要
The scaling of the already matured complementary metal-oxide-semiconductor technology is steadily approaching its physical limit, motivating the quest for a suitable alternative. Cryogenic operation offers a promising pathway toward continued improvement in computing speed and energy efficiency without aggressive scaling. However, the memory wall bottleneck of the traditional von-Neumann architecture persists even at cryogenic temperature. That is where a compute-in-memory (CiM) architecture, which embeds computing within the memory unit, comes into play. Computations within the memory unit help to reduce the expensive data transfer between the memory and the computing units. Therefore, CiM provides extreme energy efficiency that can enable lower cooling cost at cryogenic temperature. In this work, we demonstrate CryoCiM, a cryogenic compute-in-memory framework utilizing a nonvolatile memory system based on the quantum anomalous Hall effect (QAHE). Our design can perform memory read/write and universal binary logic operations (NAND, NOR, and XOR). We custom design a peripheral circuit assembly that can perform the read/write and single-cycle in-memory logic operations. The utilization of a QAHE-based memory system promises robustness against process variations, through the usage of topologically protected resistive states for data storage. CryoCiM is a major step toward utilizing exclusively cryogenic phenomena to serve the dual purpose of storage and computation with ultra-low power (~nano-watts) operations.& nbsp;Published under an exclusive license by AIP Publishing.
引用
收藏
页数:7
相关论文
共 57 条
  • [11] Photonic In-Memory Computing Primitive for Spiking Neural Networks Using Phase-Change Materials
    Chakraborty, Indranil
    Saha, Gobinda
    Roy, Kaushik
    [J]. PHYSICAL REVIEW APPLIED, 2019, 11 (01):
  • [12] Chang CZ, 2015, NAT MATER, V14, P473, DOI [10.1038/nmat4204, 10.1038/NMAT4204]
  • [13] Experimental Observation of the Quantum Anomalous Hall Effect in a Magnetic Topological Insulator
    Chang, Cui-Zu
    Zhang, Jinsong
    Feng, Xiao
    Shen, Jie
    Zhang, Zuocheng
    Guo, Minghua
    Li, Kang
    Ou, Yunbo
    Wei, Pang
    Wang, Li-Li
    Ji, Zhong-Qing
    Feng, Yang
    Ji, Shuaihua
    Chen, Xi
    Jia, Jinfeng
    Dai, Xi
    Fang, Zhong
    Zhang, Shou-Cheng
    He, Ke
    Wang, Yayu
    Lu, Li
    Ma, Xu-Cun
    Xue, Qi-Kun
    [J]. SCIENCE, 2013, 340 (6129) : 167 - 170
  • [14] Charbon E, 2016, INT EL DEVICES MEET
  • [15] Deliang Fan, 2017, 2017 IEEE Computer Society Annual Symposium on VLSI (ISVLSI). Proceedings, P683, DOI 10.1109/ISVLSI.2017.116
  • [16] High-temperature quantum anomalous Hall regime in a MnBi2Te4/Bi2Te3superlattice
    Deng, Haiming
    Chen, Zhiyi
    Wolos, Agnieszka
    Konczykowski, Marcin
    Sobczak, Kamil
    Sitnicka, Joanna
    Fedorchenko, Irina, V
    Borysiuk, Jolanta
    Heider, Tristan
    Plucinski, Lukasz
    Park, Kyungwha
    Georgescu, Alexandru B.
    Cano, Jennifer
    Krusin-Elbaum, Lia
    [J]. NATURE PHYSICS, 2021, 17 (01) : 36 - 42
  • [17] Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4
    Deng, Yujun
    Yu, Yijun
    Shi, Meng Zhu
    Guo, Zhongxun
    Xu, Zihan
    Wang, Jing
    Chen, Xian Hui
    Zhang, Yuanbo
    [J]. SCIENCE, 2020, 367 (6480) : 895 - +
  • [18] CRYOGENIC VOLTAGE COMPARATOR SYSTEM FOR 2E-H MEASUREMENTS
    DZIUBA, RF
    FIELD, BF
    FINNEGAN, TF
    [J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 1974, IM23 (04) : 264 - 267
  • [19] Highly-Scalable Novel Access Device based on Mixed Ionic Electronic Conduction (MIEC) Materials for High Density Phase Change Memory (PCM) Arrays
    Gopalakrishnan, K.
    Shenoy, R. S.
    Rettner, C. T.
    Virwani, K.
    Bethune, D. S.
    Shelby, R. M.
    Burr, G. W.
    Kellock, A.
    King, R. S.
    Nguyen, K.
    Bowers, A. N.
    Jurich, M.
    Jackson, B.
    Friz, A. M.
    Topuria, T.
    Rice, P. M.
    Kurdi, B. N.
    [J]. 2010 SYMPOSIUM ON VLSI TECHNOLOGY, DIGEST OF TECHNICAL PAPERS, 2010, : 205 - 206
  • [20] He J., 2020, 2 INT C INF TECHN CO