Efficient Compression of SIDH Public Keys

被引:68
作者
Costello, Craig [1 ]
Jao, David [2 ,3 ]
Longa, Patrick [1 ]
Naehrig, Michael [1 ]
Renes, Joost [4 ]
Urbanik, David [2 ]
机构
[1] Microsoft Res, Redmond, WA 98052 USA
[2] Univ Waterloo, Ctr Appl Cryptog Res, Waterloo, ON, Canada
[3] EvolutionQ Inc, Waterloo, ON, Canada
[4] Radboud Univ Nijmegen, Digital Secur Grp, Nijmegen, Netherlands
来源
ADVANCES IN CRYPTOLOGY - EUROCRYPT 2017, PT I | 2017年 / 10210卷
基金
加拿大自然科学与工程研究理事会;
关键词
Post-quantum cryptography; Diffie-Hellman key exchange; Supersingular elliptic curves; Isogenies; SIDH; Public-key compression; Pohlig-Hellman algorithm; COMPUTATION; LOGARITHMS; XTR;
D O I
10.1007/978-3-319-56620-7_24
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Supersingular isogeny Diffie-Hellman (SIDH) is an attractive candidate for post-quantum key exchange, in large part due to its relatively small public key sizes. A recent paper by Azarderakhsh, Jao, Kalach, Koziel and Leonardi showed that the public keys defined in Jao and De Feo's original SIDH scheme can be further compressed by around a factor of two, but reported that the performance penalty in utilizing this compression blew the overall SIDH runtime out by more than an order of magnitude. Given that the runtime of SIDH key exchange is currently its main drawback in relation to its lattice- and code-based post-quantum alternatives, an order of magnitude performance penalty for a factor of two improvement in bandwidth presents a trade-off that is unlikely to favor public-key compression in many scenarios. In this paper, we propose a range of new algorithms and techniques that accelerate SIDH public-key compression by more than an order of magnitude, making it roughly as fast as a round of standalone SIDH key exchange, while further reducing the size of the compressed public keys by approximately 12.5%. These improvements enable the practical use of compression, achieving public keys of only 330 bytes for the concrete parameters used to target 128 bits of quantum security and further strengthens SIDH as a promising post-quantum primitive.
引用
收藏
页码:679 / 706
页数:28
相关论文
共 33 条
[1]  
[Anonymous], LNCS
[2]  
[Anonymous], 2014, TECHNICAL REPORT
[3]  
[Anonymous], 2004, GRADUATE TEXTS MATH
[4]  
[Anonymous], 2015, WORKSH CYB POSTQ WOR
[5]  
[Anonymous], 2016, 8105 NISTIR
[6]  
Azarderakhsh Reza., 2016, Proceedings of the 3rd ACM International Workshop on ASIA Public-Key Cryptography, AsiaPKC'16, page, P1
[7]   Efficient pairing computation on supersingular Abelian varieties [J].
Barreto, Paulo S. L. M. ;
Galbraith, Steven D. ;
O'hEigeartaigh, Colm ;
Scott, Michael .
DESIGNS CODES AND CRYPTOGRAPHY, 2007, 42 (03) :239-271
[8]  
Barreto PSLM, 2002, LECT NOTES COMPUT SC, V2442, P354
[9]   Efficient Algorithms for Supersingular Isogeny Diffie-Hellman [J].
Costello, Craig ;
Longa, Patrick ;
Naehrig, Michael .
ADVANCES IN CRYPTOLOGY - CRYPTO 2016, PT I, 2016, 9814 :572-601
[10]  
Daniel Shanks, 1971, P S PURE MATH, V20, P415