Oxygen ion mobility and conductivity prediction in cubic yttria-stabilized zirconia single crystals

被引:33
|
作者
Asadikiya, Mohammad [1 ,2 ]
Zhong, Yu [1 ,2 ,3 ]
机构
[1] Florida Int Univ, Dept Mech & Mat Engn, Miami, FL 33174 USA
[2] Florida Int Univ, Ctr Study Matter Extreme Condit CeSMEC, Miami, FL 33199 USA
[3] Worcester Polytech Inst, Dept Mech Engn, Worcester, MA 01609 USA
关键词
PHASE-TRANSITION TEMPERATURE; ZRO2-Y2O3; SOLID-SOLUTIONS; ELECTRICAL-CONDUCTIVITY; ELECTRONIC CONDUCTIVITY; SIMULATION; DIFFUSION; TRANSPORT; ELECTROLYTES; DEFECTS;
D O I
10.1007/s10853-017-1625-1
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The CALPHAD (calculation of phase diagrams) approach is applied to predict the oxygen vacancy concentration at different temperatures and yttria concentrations of cubic yttria-stabilized zirconia (c-YSZ) single crystals. The quantitative mobility diagrams of oxygen ions are developed in a wide range of temperature and yttria concentration, using the experimental data from the literature. Therefore, the ionic conductivity of c-YSZ single crystals is predicted, using the mobility and oxygen vacancy concentration. Particularly, the conductivity of low-yttria c-YSZ is predicted by applying the CALPHAD approach for the first time. The conductivity prediction of low-yttria c-YSZ can be crucial, since new applications may be designed based on this new information. The activation energy and pre-exponential factor diagrams versus yttria concentration are also plotted.
引用
收藏
页码:1699 / 1709
页数:11
相关论文
共 50 条
  • [11] HIGH-TEMPERATURE CREEP OF YTTRIA-STABILIZED ZIRCONIA SINGLE-CRYSTALS
    MARTINEZFERNANDEZ, J
    JIMENEZMELENDO, M
    DOMINGUEZRODRIGUEZ, A
    HEUER, AH
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1990, 73 (08) : 2452 - 2456
  • [12] Understanding oxide ion transport in cation-ordered yttria-stabilized zirconia
    Madhual, Sudeshna
    Kumar, P. Padma
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2024, 26 (29) : 19992 - 19999
  • [13] Thermally stimulated depolarization current measurements in cubic and tetragonal yttria-stabilized zirconia
    Horiuchi, Naohiro
    Tsuchiya, Yu
    Nozaki, Kosuke
    Nakamura, Miho
    Nagai, Akiko
    Yamashita, Kimihiro
    SOLID STATE IONICS, 2014, 262 : 500 - 503
  • [14] Destabilization and Ion Conductivity of Yttria-Stabilized Zirconia for Solid Oxide Electrolyte by Thermal Aging
    Lee, Hwanseok
    Jo, Kanghee
    Park, Min-sung
    Kim, Taewoo
    Lee, Heesoo
    MATERIALS, 2022, 15 (19)
  • [15] Microstructure and Electrical Conductivity of Yttria-Stabilized Zirconia with Lithium Addition
    Muccillo, E. N. S.
    Campos, C. S.
    Muccillo, R.
    BRAZILIAN CERAMIC CONFERENCE 57, 2014, 798-799 : 413 - 418
  • [16] Molecular dynamics simulation of oxygen diffusion in cubic yttria-stabilized zirconia: Effects of temperature and composition
    Sizov, Vladimir V.
    Lampinen, Markku J.
    Laaksonen, Aatto
    SOLID STATE IONICS, 2014, 266 : 29 - 35
  • [17] Fast densification and electrical conductivity of yttria-stabilized zirconia nanoceramics
    Li, Q.
    Xia, T.
    Liu, X. D.
    Ma, X. F.
    Meng, J.
    Cao, X. Q.
    MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 2007, 138 (01): : 78 - 83
  • [18] Enhancing ionic conductivity of bulk single-crystal yttria-stabilized zirconia by tailoring dopant distribution
    Lee, Eunseok
    Prinz, Friedrich B.
    Cai, Wei
    PHYSICAL REVIEW B, 2011, 83 (05)
  • [19] Electronic conductivity measurement of yttria-stabilized zirconia solid electrolytes by a transient technique
    Zhang, Lei
    Zhu, Liangzhu
    Virkar, Anil V.
    JOURNAL OF POWER SOURCES, 2016, 302 : 98 - 106
  • [20] Ionic conductivity of nanocrystalline yttria-stabilized zirconia: Grain boundary and size effects
    Dura, O. J.
    Lopez de la Torre, M. A.
    Vazquez, L.
    Chaboy, J.
    Boada, R.
    Rivera-Calzada, A.
    Santamaria, J.
    Leon, C.
    PHYSICAL REVIEW B, 2010, 81 (18)