On sections of convex bodies in hyperbolic space

被引:2
作者
Hiripitiyage, K. L. H. [1 ]
Yaskin, V. [1 ]
机构
[1] Univ Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Convex body; Origin-symmetric body; Hyperbolic space; Fourier transform; BUSEMANN-PETTY PROBLEM;
D O I
10.1016/j.jmaa.2016.07.051
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider two problems on sections of convex bodies in hyperbolic space. The first one is a modified version of the Busemann Petty problem. We look at conditions that guarantee a positive answer to this problem in all dimensions. The second problem is an analogue of a result of Makai, Martini, and Odor about origin symmetry. If in every direction the parallel section function has a critical value at zero, then the body is origin-symmetric. For both problems we use Fourier transform techniques. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:1394 / 1409
页数:16
相关论文
共 14 条
[1]  
[Anonymous], 1964, Generalized Functions, Volume 1: Properties and Operations
[2]  
Busemann H., 1956, Math. Scand, V4, P88, DOI DOI 10.7146/MATH.SCAND.A-10457
[3]   The Busemann-Petty problem in the complex hyperbolic space [J].
Dann, Susanna .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2013, 155 (01) :155-172
[4]   Fourier transforms and the Funk-Hecke theorem in convex geometry [J].
Goodey, Paul ;
Yaskin, Vladyslav ;
Yaskina, Maryna .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2009, 80 :388-404
[5]   The complex Busemann-Petty problem on sections of convex bodies [J].
Koldobsky, A. ;
Koenig, H. ;
Zymonopoulou, M. .
ADVANCES IN MATHEMATICS, 2008, 218 (02) :352-367
[6]   Modified Busemann-Petty problem on sections of convex bodies [J].
Koldobsky, A. ;
Yaskin, V. ;
Yaskina, M. .
ISRAEL JOURNAL OF MATHEMATICS, 2006, 154 (1) :191-207
[7]   A generalization of the Busemann-Petty problem on sections of convex bodies [J].
Koldobsky, A .
ISRAEL JOURNAL OF MATHEMATICS, 1999, 110 (1) :75-91
[8]  
Koldobsky A., 2005, FOURIER ANAL CONVEX, V116
[9]   Maximal sections and centrally symmetric bodies [J].
Makai, E ;
Martini, H ;
Odor, T .
MATHEMATIKA, 2000, 47 (93-94) :19-30
[10]   Generalized intersection bodies [J].
Milman, Emanuel .
JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 240 (02) :530-567