Sandwich-Structured Graphene-Nickel Silicate-Nickel Ternary Composites as Superior Anode Materials for Lithium-Ion Batteries

被引:35
作者
Jin, Renxi [1 ]
Yang, Yang [1 ]
Li, Yunfeng [1 ]
Liu, Xianchun [1 ]
Xing, Yan [1 ]
Song, Shuyan [2 ]
Shi, Zhan [3 ]
机构
[1] NE Normal Univ, Dept Chem, Changchun 130024, Peoples R China
[2] Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Rare Earth Resource Utilizat, Changchun 130012, Peoples R China
[3] Jilin Univ, State Key Lab Inorgan Synth & Preparat Chem, Changchun 130022, Peoples R China
基金
高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
anode material; nanostructures; silicates; solvothermal synthesis; ternary composites; ELECTROSPUN CARBON NANOFIBERS; ENERGY-STORAGE MATERIALS; ELECTROCHEMICAL PERFORMANCE; NANOSTRUCTURED MATERIALS; HIGH-CAPACITY; NANOSHEETS; NANOPARTICLES; NI; SUPERCAPACITORS; FABRICATION;
D O I
10.1002/chem.201500249
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We report the synthesis of sandwich-structured graphene-nickel silicate-Ni ternary composites by using the solvothermal method followed by a simple in situ reduction procedure. The composites show an interesting structure with graphene sandwiched between two layers of well-dispersed Ni nanoparticles (NPs) anchored on ultrathin nickel silicate nanosheets. These ternary composites exhibit enhanced performance as anode materials owing to the synergistic effect between the graphene matrix and electrochemically inert Ni nanoparticles, an effect that holds promise for the design and fabrication of other advanced electrode materials.
引用
收藏
页码:9014 / 9017
页数:4
相关论文
共 45 条
[1]  
[Anonymous], 2004, ANGEW CHEM, V116, P2051
[2]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377
[3]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[4]   Microwave self-assembly of 3D graphene-carbon nanotube-nickel nanostructure for high capacity anode material in lithium ion battery [J].
Bae, Seok-Hu ;
Karthikeyan, Kaliyappan ;
Lee, Yun-Sung ;
Oh, Il-Kwon .
CARBON, 2013, 64 :527-536
[5]   Electrospun Carbon-Tin Oxide Composite Nanofibers for Use as Lithium Ion Battery Anodes [J].
Bonino, Christopher A. ;
Ji, Liwen ;
Lin, Zhan ;
Toprakci, Ozan ;
Zhang, Xiangwu ;
Khan, Saad A. .
ACS APPLIED MATERIALS & INTERFACES, 2011, 3 (07) :2534-2542
[6]   Mechanically strong, electrically conductive, and biocompatible graphene paper [J].
Chen, Haiqun ;
Mueller, Marc B. ;
Gilmore, Kerry J. ;
Wallace, Gordon G. ;
Li, Dan .
ADVANCED MATERIALS, 2008, 20 (18) :3557-+
[7]   SnO2-Based Nanomaterials: Synthesis and Application in Lithium-Ion Batteries [J].
Chen, Jun Song ;
Lou, Xiong Wen .
SMALL, 2013, 9 (11) :1877-1893
[8]   From microporous to mesoporous molecular sieve materials and their use in catalysis [J].
Corma, A .
CHEMICAL REVIEWS, 1997, 97 (06) :2373-2419
[9]   SnO2 nanosheets grown on graphene sheets with enhanced lithium storage properties [J].
Ding, Shujiang ;
Luan, Deyan ;
Boey, Freddy Yin Chiang ;
Chen, Jun Song ;
Lou, Xiong Wen .
CHEMICAL COMMUNICATIONS, 2011, 47 (25) :7155-7157
[10]   Graphene-supported anatase TiO2 nanosheets for fast lithium storage [J].
Ding, Shujiang ;
Chen, Jun Song ;
Luan, Deyan ;
Boey, Freddy Yin Chiang ;
Madhavi, Srinivasan ;
Lou, Xiong Wen .
CHEMICAL COMMUNICATIONS, 2011, 47 (20) :5780-5782