Multimodal Deep Learning and Fast Retrieval for Recommendation

被引:0
|
作者
Ciarlo, Daniele [1 ,3 ]
Portinale, Luigi [1 ,2 ]
机构
[1] Univ Piemonte Orientale, DiSIT, Inst Comp Sci, Alessandria, Italy
[2] Inferendo Srl, Alessandria, Italy
[3] ORS Grp, Roddi, Italy
关键词
Multimodal embeddings; Recommender systems; Locality sensitive hashing;
D O I
10.1007/978-3-031-16564-1_6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a retrieval architecture in the context of recommender systems for e-commerce applications, based on a multi-modal representation of the items of interest (textual description and images of the products), paired with a locality-sensitive hashing (LSH) indexing scheme for the fast retrieval of the potential recommendations. In particular, we learn a latent multimodal representation of the items through the use of CLIP architecture, combining text and images in a contrastive way. The item embeddings thus generated are then searched by means of different types of LSH. We report on the experiments we performed on two real-world datasets from e-commerce sites, containing both images and textual descriptions of the products.
引用
收藏
页码:52 / 60
页数:9
相关论文
共 50 条
  • [21] An integrated model based on deep multimodal and rank learning for point-of-interest recommendation
    Liao, Jianxin
    Liu, Tongcun
    Yin, Hongzhi
    Chen, Tong
    Wang, Jingyu
    Wang, Yulong
    WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2021, 24 (02): : 631 - 655
  • [22] Multimodal Recipe Recommendation System Using Deep Learning and Rule-Based Approach
    Khilji A.F.U.R.
    Sinha U.
    Singh P.
    Ali A.
    Dadure P.
    Manna R.
    Pakray P.
    SN Computer Science, 4 (4)
  • [23] A Fast Deep Learning Model for Textual Relevance in Biomedical Information Retrieval
    Mohan, Sunil
    Fiorini, Nicolas
    Kim, Sun
    Lu, Zhiyong
    WEB CONFERENCE 2018: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW2018), 2018, : 77 - 86
  • [24] Fast Self-Attentive Multimodal Retrieval
    Wehrmann, Jonatas
    Lopes, Mauricio A.
    More, Martin D.
    Barros, Rodrigo C.
    2018 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2018), 2018, : 1871 - 1878
  • [25] Deep multimodal learning for cross-modal retrieval: One model for all tasks
    Beltran, L. Viviana Beltran
    Caicedo, Juan C.
    Journet, Nicholas
    Coustaty, Mickael
    Lecellier, Francois
    Doucet, Antoine
    PATTERN RECOGNITION LETTERS, 2021, 146 : 38 - 45
  • [26] A new model driven architecture for deep learning-based multimodal lifelog retrieval
    Ben Abdallah, Fatma
    Feki, Ghada
    Ben Ammar, Anis
    Ben Amar, Chokri
    26. INTERNATIONAL CONFERENCE IN CENTRAL EUROPE ON COMPUTER GRAPHICS, VISUALIZATION AND COMPUTER VISION (WSCG 2018), 2018, 2803 : 8 - 17
  • [27] Variational Invariant Representation Learning for Multimodal Recommendation
    Yang, Wei
    Zhang, Haoran
    Zhang, Li
    PROCEEDINGS OF THE 2024 SIAM INTERNATIONAL CONFERENCE ON DATA MINING, SDM, 2024, : 752 - 760
  • [28] Multimodal Representation Learning for Recommendation in Internet of Things
    Huang, Zhenhua
    Xu, Xin
    Ni, Juan
    Zhu, Honghao
    Wang, Cheng
    IEEE INTERNET OF THINGS JOURNAL, 2019, 6 (06) : 10675 - 10685
  • [29] Deep learning for recommendation systems
    Dellal-Hedjazi, Badiaa
    Alimazighi, Zaiai
    2020 6TH IEEE CONGRESS ON INFORMATION SCIENCE AND TECHNOLOGY (IEEE CIST'20), 2020, : 90 - 97
  • [30] Deep Learning for Search and Recommendation
    Liu, Wei
    Xie, Kexin
    Pang, Linsey
    Bailey, James
    Cao, Longbing
    Zhang, Yuxi
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 5171 - 5172