Mei symmetry and Mei conserved quantity of Nielsen equation for a nonholonomic system

被引:17
作者
Jia Li-Qun [1 ]
Luo Shao-Kai [2 ]
Zhang Yao-Yu [3 ]
机构
[1] Jiangnan Univ, Sch Sci, Wuxi 214122, Peoples R China
[2] Zhejiang Sci & Technol Univ, Inst Math Mech & Math Phys, Hangzhou 310018, Peoples R China
[3] Pingdingshan Univ, Coll Elect & Informat Engn, Pingdingshan 467002, Peoples R China
关键词
nonholonomic systems; Nielsen equation; Mei symmetry; Mei conserved quantity;
D O I
10.7498/aps.57.2006
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Mei symmetry and Mei conserved quantity of Nielsen equation with multipliers for a nonholonomic, non-conservative system of Chetaev's type are studied. The differential equations of motion of Nielsen equation with multipliers for the system, the definition and criterion of Mei symmetry, and the condition and the form of Mei conserved quantity deduced directly by Mei symmetry for the system are obtained. An example is given to illustrate the application of the results.
引用
收藏
页码:2006 / 2010
页数:5
相关论文
共 24 条
[1]  
[Anonymous], 1991, ADV ANAL MECH
[2]  
Chen XW, 2002, APPL MATH MECH-ENGL, V23, P53
[3]   A new type of conserved quantity of Mei symmetry for Lagrange system [J].
Fang Jian-Hui ;
Ding Ning ;
Wang Peng .
CHINESE PHYSICS, 2007, 16 (04) :887-890
[4]   Lie symmetries and conserved quantities of relativistic Birkhoff systems [J].
Fu, JL ;
Wang, XM .
ACTA PHYSICA SINICA, 2000, 49 (06) :1023-1027
[5]   A NEW CONSERVATION LAW CONSTRUCTED WITHOUT USING EITHER LAGRANGIANS OR HAMILTONIANS [J].
HOJMAN, SA .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (07) :L291-L295
[6]   Hojman conserved quantities for systems with non-Chetaev nonholonomic constraints in the event space [J].
Jia Li-Qun ;
Zhang Yao-Yu ;
Zheng Shi-Wang .
ACTA PHYSICA SINICA, 2007, 56 (02) :649-654
[7]   Mei symmetry of generalized Hamilton systems with additional terms [J].
Jia Li-Qun ;
Zheng Shi-Wang .
ACTA PHYSICA SINICA, 2006, 55 (08) :3829-3832
[8]   Mei symmetry, Noether symmetry and Lie symmetry of Hamiltonian system [J].
Luo, SK .
ACTA PHYSICA SINICA, 2003, 52 (12) :2941-2944
[9]   DYNAMICAL SYMMETRIES AND CONSERVED QUANTITIES [J].
LUTZKY, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1979, 12 (07) :973-981
[10]  
Mei F X., 1985, FDN MECH NONHOLONOMI