poLCA: An R Package for Polytomous Variable Latent Class Analysis

被引:1039
作者
Linzer, Drew A. [1 ]
Lewis, Jeffrey B. [2 ]
机构
[1] Emory Univ, Dept Polit Sci, Atlanta, GA 30322 USA
[2] Univ Calif Los Angeles, Dept Polit Sci, Los Angeles, CA 90095 USA
关键词
latent class analysis; latent class regression; polytomous; categorical; concomitant; MODEL SELECTION; SUPPORT;
D O I
10.18637/jss.v042.i10
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
poLCA is a software package for the estimation of latent class and latent class regression models for polytomous outcome variables, implemented in the R statistical computing environment. Both models can be called using a single simple command line. The basic latent class model is a finite mixture model in which the component distributions are assumed to be multi-way cross-classification tables with all variables mutually independent. The latent class regression model further enables the researcher to estimate the effects of covariates on predicting latent class membership. poLCA uses expectation-maximization and Newton-Raphson algorithms to find maximum likelihood estimates of the model parameters.
引用
收藏
页码:1 / 29
页数:29
相关论文
共 38 条
[1]  
Agresti A, 2013, Categorical data analysis, V3rd
[2]  
Akaike H., 1973, 2 INT S INFORM THEOR, P267
[3]  
[Anonymous], 2013, Finite Mixture Distributions
[4]  
[Anonymous], 2010, R LANG ENV STAT COMP
[5]  
[Anonymous], 2011, poLCA: Polytomous Variable Latent Class Analysis
[6]  
[Anonymous], 2000, WILEY SERIES PROBABI
[7]  
[Anonymous], 1950, Measurement and Prediction
[8]  
[Anonymous], 2002, Latent Class Analysis
[9]  
[Anonymous], 2011, e1071: Misc Functions of the Department of Statistics (e1071)
[10]  
[Anonymous], 1984, An Introduction to Latent Variable Models