Numerical solution of singularly perturbed boundary value problems by improved least squares method

被引:14
作者
Ahmadinia, M. [1 ]
Safari, Z. [1 ]
机构
[1] Univ Qom, Fac Sci, Dept Math, Isfahan Old Rd,POB 37185-3766, Qom, Iran
关键词
Singular perturbed differential equations; Boundary value problems; Least squares method; B-splines; GROUP SHOOTING METHOD; DIFFERENTIAL-EQUATIONS; COLLOCATION METHOD; SCHEME; LAYER;
D O I
10.1016/j.cam.2017.09.023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper introduces a numerical method based on least squares method for solving singularly perturbed differential equations with two-point boundary conditions. Moreover, an intelligent algorithm is proposed to improve the method. This algorithm is essential as it finds the unknown location of the layer (boundary layer and interior layer). As part of evaluation, the convergence analysis of the method is presented. Numerical examples demonstrate the superconvergence of the intelligent algorithm and confirm the accuracy of the theory. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:156 / 165
页数:10
相关论文
共 30 条
[1]  
Ascher U., 1988, Numerical Solution of Boundary Value Problems for Ordinary Differential Equations
[2]   Richardson extrapolation for a singularly perturbed turning point problem with exponential boundary layers [J].
Becher, S. ;
Roos, H. -G. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 290 :334-351
[3]   A parameter robust higher order numerical method for singularly perturbed two parameter problems with non-smooth data [J].
Chandru, M. ;
Prabha, T. ;
Shanthi, V. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 309 :11-27
[4]  
Farrell P.A., 2000, Applied Mathematics (Boca Raton)
[5]  
Funaro D., 2008, POLYNOMIAL APPROXIMA
[6]   A numerical method for singularly perturbed turning point problems with an interior layer [J].
Geng, F. Z. ;
Qian, S. P. ;
Li, S. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 255 :97-105
[7]   RWPM - A SOFTWARE PACKAGE OF SHOOTING METHODS FOR NONLINEAR 2-POINT BOUNDARY-VALUE-PROBLEMS [J].
HERMANN, M ;
KAISER, D .
APPLIED NUMERICAL MATHEMATICS, 1993, 13 (1-3) :103-108
[8]   SHOOTING METHODS FOR 2-POINT BVPS WITH PARTIALLY SEPARATED ENDCONDITIONS [J].
HERMANN, M ;
KAISER, D .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1995, 75 (09) :651-668
[9]  
Hermann M., 2016, NONLINEAR ORDINARY D, DOI DOI 10.1007/978-81-322-2812-7
[10]   Variable-mesh difference scheme for singularly-perturbed boundary-value problems using splines [J].
Kadalbajoo, MK ;
Bawa, RK .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1996, 90 (02) :405-416