ALGORITHMS FOR PRIMARY DECOMPOSITION OF MODULES

被引:4
作者
Idrees, Nazeran [1 ]
机构
[1] Govt Coll Univ, Abdus Salam Sch Math Sci, Lahore, Pakistan
关键词
Primary modules; associated primes; pseudo primary; localization; extraction; POLYNOMIAL IDEALS; GROBNER BASES;
D O I
10.1556/SScMath.48.2011.2.1167
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The algorithms of Shimoyama and Yokoyama for primary decomposition of ideals are generalized to submodules of a free module over the polynomial ring in several variables with coefficients in a field. The algorithms are implemented in SINGULAR.
引用
收藏
页码:227 / 246
页数:20
相关论文
共 7 条
[1]  
[Anonymous], 1995, COMMUTATIVE ALGEBRA, DOI DOI 10.1007/978-1-4612-5350-1
[2]   DIRECT METHODS FOR PRIMARY DECOMPOSITION [J].
EISENBUD, D ;
HUNEKE, C ;
VASCONCELOS, W .
INVENTIONES MATHEMATICAE, 1992, 110 (02) :207-235
[3]   GROBNER BASES AND PRIMARY DECOMPOSITION OF POLYNOMIAL IDEALS [J].
GIANNI, P ;
TRAGER, B ;
ZACHARIAS, G .
JOURNAL OF SYMBOLIC COMPUTATION, 1988, 6 (2-3) :149-167
[4]  
Greuel G.-M., 2008, A Singular introduction to commutative algebra
[5]  
Greuel G.-M., SINGULAR COMPUTER AL
[6]   GROBNER BASES AND PRIMARY DECOMPOSITION OF MODULES [J].
RUTMAN, EW .
JOURNAL OF SYMBOLIC COMPUTATION, 1992, 14 (05) :483-503
[7]   Localization and primary decomposition of polynomial ideals [J].
Shimoyama, T ;
Yokoyama, K .
JOURNAL OF SYMBOLIC COMPUTATION, 1996, 22 (03) :247-277