Artificial neural network technique to predict dynamic fracture of particulate composite

被引:47
作者
Kushvaha, Vinod [1 ]
Kumar, S. Anand [2 ]
Madhushri, Priyanka [3 ]
Sharma, Aanchna [1 ]
机构
[1] Indian Inst Technol Jammu, Dept Civil Engn, Jammu, India
[2] Indian Inst Technol Jammu, Dept Mech Engn, Jammu, J&K, India
[3] Stanley Black & Decker, New Britain, CT USA
关键词
Artificial neural network; dynamic fracture toughness; stress intensity factor; impact loading; polymer composite; prediction; modelling; BEHAVIOR; MODULUS; SHAPE;
D O I
10.1177/0021998320911418
中图分类号
TB33 [复合材料];
学科分类号
摘要
In this paper, the artificial neural network technique using a multi-layer perceptron feed forward scheme was used to model and predict the mode-I fracture behaviour of particulate polymer composites when subjected to impact loading. A neural network consisting of three-layers was employed to develop the network. Artificial neural network was constructed using six input parameters such as shear wave speed (C-S), density (D), elastic modulus (E-d), longitudinal wave speed (C-L), volume fraction (V-f) and time (t). The influence of input parameters on the output stress intensity factor and crack-initiation fracture toughness were found to be in the order of t > C-S > D > E-d > C-L > V-f. The degree of accuracy of prediction was 92.7% for stress intensity factor. In this regard, artificial neural network can be used in the modelling and prediction of fracture behaviour of particulate polymer composites under impact loading.
引用
收藏
页码:3099 / 3108
页数:10
相关论文
共 28 条
[1]  
[Anonymous], 1986, FDN PARALLEL DISTRIB
[2]   Modeling of fiber pull-out in continuous fiber reinforced ceramic composites using finite element method and artificial neural networks [J].
Bheemreddy, V. ;
Chandrashekhara, K. ;
Dharani, L. R. ;
Hilmas, G. E. .
COMPUTATIONAL MATERIALS SCIENCE, 2013, 79 :663-673
[3]  
Cupertino LF, 2011, 2011 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), P1599, DOI 10.1109/IJCNN.2011.6033415
[4]  
Davies P, 1999, NATO ADV SCI I E-APP, V361, P235
[5]   A split Hopkinson pressure bar technique to determine compressive stress-strain data for rock materials [J].
Frew, DJ ;
Forrestal, MJ ;
Chen, W .
EXPERIMENTAL MECHANICS, 2001, 41 (01) :40-46
[6]   Comparison of modelling using regression techniques and an artificial neural network for obtaining the static modulus of elasticity of Pinus radiata D. Don. timber by ultrasound [J].
Garcia-Iruela, Alberto ;
Garcia Fernandez, Francisco ;
Garcia Esteban, Luis ;
de Palacios, Paloma ;
Simon, Cristina ;
Arriaga, Francisco .
COMPOSITES PART B-ENGINEERING, 2016, 96 :112-118
[7]   Metamodeling and Optimization of a Blister Copper Two-Stage Production Process [J].
Jarosz, Piotr ;
Kusiak, Jan ;
Maecki, Stanisaw ;
Morkisz, Pawe ;
Oprocha, Piotr ;
Pietrucha, Wojciech ;
Sztangret, Aukasz .
JOM, 2016, 68 (06) :1535-1540
[8]  
Javid S., 2014, Mechanics of Biological Systems and Materials, V4, P53
[9]   Role of particle size and filler-matrix adhesion on dynamic fracture of glass-filled epoxy. I. Macromeasurements [J].
Kitey, R ;
Tippur, HV .
ACTA MATERIALIA, 2005, 53 (04) :1153-1165
[10]   Prediction of fretting wear behavior of surface mechanical attrition treated Ti-6Al-4V using artificial neural network [J].
Kumar, S. Anand ;
Raman, S. Ganesh Sundara ;
Narayanan, T. S. N. Sankara ;
Gnanamoorthy, R. .
MATERIALS & DESIGN, 2013, 49 :992-999