ON TINY ZERO-SUM SEQUENCES OVER FINITE ABELIAN GROUPS

被引:1
作者
Gao, Weidong [1 ]
Hui, Wanzhen [1 ]
Li, Xue [2 ]
Qin, Xiaoer [3 ]
Yin, Qiuyu [1 ]
机构
[1] LPMC TJKLC Nankai Univ, Ctr Combinator, Tianjin 300071, Peoples R China
[2] Tianjin Univ Commerce, Coll Sci, Tianjin 300134, Peoples R China
[3] Yangtze Normal Univ, Sch Math & Stat, Chongqing 408100, Peoples R China
基金
中国国家自然科学基金;
关键词
zero-sum sequence; cross number; CROSS NUMBER; KLEITMAN;
D O I
10.4064/cm8607-9-2021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be an additive finite abelian group. Let S = g(1) .... g(l) be a sequence over G, and k(S) = ord(g(1))(-1)+ ... + ord(g(l))(-1) be its cross number. Let t(G) (resp. eta(G)) be the smallest integer t such that every sequence of t elements, repetition allowed, from G has a non-empty zero-sum subsequence T with k(T) <= 1 (resp. vertical bar T vertical bar <= exp(G)). It is easy to see that t(G) >= eta (G). It is known that t(G) = eta(G) = vertical bar G vertical bar when G is cyclic, and for any integer r >= 3 there are infinitely many groups G of rank r such that t(G) > eta (G). Girard (2012) conjectured that t(G) = eta(G) for all finite abelian groups of rank 2. This conjecture has been verified only for the groups G similar or equal to C-p alpha circle plus C-p alpha, G similar or equal to C-2 circle plus C-2p and G similar or equal to C-3 circle plus C-3p with p >= 5, where p is a prime. We confirm this conjecture for more groups, including the groups G similar or equal to C-n circle plus C-n with the smallest prime divisor of n not less than the number of distinct prime divisors of n.
引用
收藏
页码:311 / 324
页数:14
相关论文
共 19 条
[1]   A LATTICE POINT PROBLEM AND ADDITIVE NUMBER-THEORY [J].
ALON, N ;
DUBINER, M .
COMBINATORICA, 1995, 15 (03) :301-309
[2]   Zero-sum problems in finite abelian groups and affine caps [J].
Edel, Yves ;
Elsholtz, Christian ;
Geroldinger, Alfred ;
Kubertin, Silke ;
Rackham, Laurence .
QUARTERLY JOURNAL OF MATHEMATICS, 2007, 58 :159-186
[3]  
Elledge S., 2005, Integers, V5, pA17
[4]  
Elsholtz C, 2004, COMBINATORICA, V24, P351
[5]  
Fan Y.S., 2013, INTEGERS, V13, DOI DOI 10.1515/9783110298161.752
[6]   Two zero-sum invariants on finite abelian groups [J].
Fan, Yushuang ;
Gao, Weidong ;
Wang, Linlin ;
Zhong, Qinghai .
EUROPEAN JOURNAL OF COMBINATORICS, 2013, 34 (08) :1331-1337
[7]  
Gao W., 2007, Integers, V7, pA21
[8]   Zero-sum problems in finite abelian groups: A survey [J].
Gao, Weidong ;
Geroldinger, Alfred .
EXPOSITIONES MATHEMATICAE, 2006, 24 (04) :337-369
[9]   ON A CONJECTURE OF KLEITMAN AND LEMKE [J].
GEROLDINGER, A .
JOURNAL OF NUMBER THEORY, 1993, 44 (01) :60-65
[10]   THE CROSS NUMBER OF FINITE ABELIAN-GROUPS .2. [J].
GEROLDINGER, A ;
SCHNEIDER, R .
EUROPEAN JOURNAL OF COMBINATORICS, 1994, 15 (04) :399-405