A microscopically accurate continuum model for void formation during semiconductor silicon processing

被引:32
作者
Frewen, TA
Kapur, SS
Haeckl, W
von Ammon, W
Sinno, T [1 ]
机构
[1] Univ Penn, Dept Chem & Biomol Engn, Philadelphia, PA 19104 USA
[2] Siltron AG, D-84479 Burghausen, Germany
基金
美国国家科学基金会;
关键词
atomistic simulation; configurational entropy; vacancy clusters; voids; point defects; Czochralski method;
D O I
10.1016/j.jcrysgro.2005.02.062
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
A predictive continuum model for void growth in crystalline silicon is presented based on extensive atomistic calculations of vacancy cluster thermodynamic and structural properties. It is shown that the previously neglected internal configurational entropy of clusters dramatically alters the high temperature formation free energies and capture radii of small clusters, which in turn strongly impact the predicted evolution of the vacancy size distribution during Czochralski crystal growth. The new model is shown to resolve an outstanding discrepancy between experimentally measured and predicted void nucleation temperatures while at the same time providing an excellent representation of the final size distribution and void density under a variety of crystal growth conditions. All thermophysical parameters for describing point defect transport and thermodynamics used in the model were obtained independently using regression to other experimental systems. The results of this work demonstrate the potential utility, and perhaps necessity, of atomistic simulations for quantitatively accurate process modeling of complex solid-state aggregation phenomena. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:258 / 271
页数:14
相关论文
共 41 条
[1]   Environment-dependent interatomic potential for bulk silicon [J].
Bazant, MZ ;
Kaxiras, E ;
Justo, JF .
PHYSICAL REVIEW B, 1997, 56 (14) :8542-8552
[2]  
Becker R, 1935, ANN PHYS-BERLIN, V24, P719
[3]   Evolution of energetics and bonding of compact self-interstitial clusters in Si [J].
Bongiorno, A ;
Colombo, L ;
Cargnoni, F ;
Gatti, C ;
Rosati, M .
EUROPHYSICS LETTERS, 2000, 50 (05) :608-614
[4]  
Chang J. S., 1970, Journal of Computational Physics, V6, P1, DOI 10.1016/0021-9991(70)90001-X
[5]   REDUCTION OF IRON SOLUBILITY IN SILICON WITH OXYGEN PRECIPITATES [J].
COLAS, EG ;
WEBER, ER .
APPLIED PHYSICS LETTERS, 1986, 48 (20) :1371-1373
[6]   Defects in silicon crystals and their impact on DRAM device characteristics [J].
Dornberger, E ;
Temmler, D ;
von Ammon, W .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (04) :G226-G231
[7]   Silicon crystals for future requirements of 300 mm wafers [J].
Dornberger, E ;
Virbulis, J ;
Hanna, B ;
Hoelzl, R ;
Daub, E ;
von Ammon, W .
JOURNAL OF CRYSTAL GROWTH, 2001, 229 (01) :11-16
[8]  
DORNBERGER E, 1998, THESIS U CATHOLIQUE
[9]   IMPLANTATION AND TRANSIENT B-DIFFUSION IN SI - THE SOURCE OF THE INTERSTITIALS [J].
EAGLESHAM, DJ ;
STOLK, PA ;
GOSSMANN, HJ ;
POATE, JM .
APPLIED PHYSICS LETTERS, 1994, 65 (18) :2305-2307
[10]   Computer simulation of oxygen precipitation in Czochralski-grown silicon during HI-LO-HI anneals [J].
Esfandyari, J ;
Schmeiser, C ;
Senkader, S ;
Hobler, G ;
Murphy, B .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (03) :995-1001