Two-Dimensional Mott-Hubbard Electrons in an Artificial Honeycomb Lattice

被引:180
|
作者
Singha, A. [1 ,2 ]
Gibertini, M. [1 ,2 ]
Karmakar, B. [1 ,2 ]
Yuan, S. [3 ]
Polini, M. [1 ,2 ,4 ]
Vignale, G. [4 ,5 ]
Katsnelson, M. I. [3 ]
Pinczuk, A. [6 ,7 ]
Pfeiffer, L. N. [8 ]
West, K. W. [8 ]
Pellegrini, V. [1 ,2 ]
机构
[1] CNR, Ist Nanosci, I-56126 Pisa, Italy
[2] Scuola Normale Super Pisa, I-56126 Pisa, Italy
[3] Radboud Univ Nijmegen, Inst Mol & Mat, NL-6525 AJ Nijmegen, Netherlands
[4] Chinese Acad Sci, Kavli Inst Theoret Phys China, Beijing 100190, Peoples R China
[5] Univ Missouri, Dept Phys & Astron, Columbia, MO 65211 USA
[6] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY USA
[7] Columbia Univ, Dept Phys, New York, NY USA
[8] Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA
基金
美国国家科学基金会;
关键词
MEAN-FIELD THEORY; DIRAC FERMIONS; GAS; GRAPHENE; PHYSICS;
D O I
10.1126/science.1204333
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Artificial crystal lattices can be used to tune repulsive Coulomb interactions between electrons. We trapped electrons, confined as a two-dimensional gas in a gallium arsenide quantum well, in a nanofabricated lattice with honeycomb geometry. We probed the excitation spectrum in a magnetic field, identifying collective modes that emerged from the Coulomb interaction in the artificial lattice, as predicted by the Mott-Hubbard model. These observations allow us to determine the Hubbard gap and suggest the existence of a Coulomb-driven ground state.
引用
收藏
页码:1176 / 1179
页数:4
相关论文
共 50 条
  • [21] Orbital-selective Mott-Hubbard transition in the two-band Hubbard model
    Arita, R
    Held, K
    PHYSICAL REVIEW B, 2005, 72 (20)
  • [22] Two electrons in a honeycomb lattice
    Basu, Saurabh
    Kadolkar, C. Y.
    Goveas, Neena
    MODERN PHYSICS LETTERS B, 2007, 21 (07): : 391 - 398
  • [23] TOPOLOGICAL MAGNETIC SOLITONS IN THE 2-DIMENSIONAL MOTT-HUBBARD GAP
    JOHN, S
    GOLUBENTSEV, A
    PHYSICAL REVIEW LETTERS, 1993, 71 (20) : 3343 - 3346
  • [24] Gigantic optical nonlinearity in one-dimensional Mott-Hubbard insulators
    Kishida, H
    Matsuzaki, H
    Okamoto, H
    Manabe, T
    Yamashita, M
    Taguchi, Y
    Tokura, Y
    NATURE, 2000, 405 (6789) : 929 - 932
  • [25] Tracing the Mott-Hubbard transition in one-dimensional Hubbard models without Umklapp scattering
    Gebhard, Florian
    Legeza, Oers
    PHYSICAL REVIEW B, 2021, 104 (24)
  • [26] Effective spin couplings in the Mott insulator of the honeycomb lattice Hubbard model
    Yang, Hong-Yu
    Fabricio Albuquerque, A.
    Capponi, Sylvain
    Laeuchli, Andreas M.
    Schmidt, Kai Phillip
    NEW JOURNAL OF PHYSICS, 2012, 14
  • [27] Finite Doping Signatures of the Mott Transition in the Two-Dimensional Hubbard Model
    Sordi, G.
    Haule, K.
    Tremblay, A. -M. S.
    PHYSICAL REVIEW LETTERS, 2010, 104 (22)
  • [28] Finite-temperature Mott transition in the two-dimensional Hubbard model
    Onoda, S.
    Imada, M.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2004, 272 : E275 - E276
  • [29] Effect of magnetic field, pressure and correlated hopping of electrons on conductivity of Mott-Hubbard material
    Didukh, Leonid
    Skorenkyy, Yuriy
    Kramar, Oleksandr
    Dovhopyaty, Yuriy
    PHYSICA B-CONDENSED MATTER, 2006, 378-80 : 321 - 322
  • [30] Signatures of the Mott transition in the antiferromagnetic state of the two-dimensional Hubbard model
    Fratino, L.
    Semon, P.
    Charlebois, M.
    Sordi, G.
    Tremblay, A. -M. S.
    PHYSICAL REVIEW B, 2017, 95 (23)