The Existence of Solutions to Nonlinear Matrix Equations via Fixed Points of Multivalued F-Contractions

被引:10
作者
Hussain, Nawab [1 ]
Ali, Ghada [1 ]
Iqbal, Iram [2 ]
Samet, Bessem [3 ]
机构
[1] King Abdulaziz Univ, Dept Math, POB 80203, Jeddah 21589, Saudi Arabia
[2] Univ Sargodha, Dept Math, Sargodha 40100, Pakistan
[3] King Saud Univ, Coll Sci, Dept Math, POB 2455, Riyadh 11451, Saudi Arabia
关键词
F-contraction; fixed points; matrix equation; multi-valued mapping; THEOREMS; MAPPINGS;
D O I
10.3390/math8020212
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we set up an adequate condition for the presence of a solution of the nonlinear matrix equation. To do so, we prove the existence of fixed points for multi-valued modified F-contractions in the context of complete metric spaces, which generalize, refine, and extend several existing results in the literature. An example is accompanies the obtained results to show that derived results are a proper generalization.
引用
收藏
页数:18
相关论文
共 33 条
  • [1] Fixed Point Theorems in Ordered Banach Spaces and Applications to Nonlinear Integral Equations
    Agarwal, Ravi P.
    Hussain, Nawab
    Taoudi, Mohamed-Aziz
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2012,
  • [2] Ahmad J, 2015, J NONLINEAR SCI APPL, V8, P909
  • [3] Fixed points of multivalued nonlinear F-contractions on complete metric spaces
    Altun, Ishak
    Minak, Gulhan
    Olgun, Murat
    [J]. NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2016, 21 (02): : 201 - 210
  • [4] Altun I, 2015, J NONLINEAR CONVEX A, V16, P659
  • [5] On fixed points of α-ψ-contractive multifunctions
    Asl, J. Hasanzade
    Rezapour, S.
    Shahzad, N.
    [J]. FIXED POINT THEORY AND APPLICATIONS, 2012, : 1 - 6
  • [7] Ciric Lj.B., 1972, Mat. Vesnik, V9, P265
  • [8] Fixed point theorems for multi-valued contractions in complete metric spaces
    Ciric, Ljubomir
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 348 (01) : 499 - 507
  • [9] Multi-valued nonlinear contraction mappings
    Ciric, Ljubomir
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (7-8) : 2716 - 2723
  • [10] Common fixed point theorems for weakly increasing mappings on ordered orbitally complete metric spaces
    Ding, Hui-Sheng
    Kadelburg, Zoran
    Nashine, Hemant Kumar
    [J]. FIXED POINT THEORY AND APPLICATIONS, 2012,