Assessing the validity of weighted generalized estimating equations

被引:9
作者
Qu, A. [1 ]
Yi, G. Y. [2 ]
Song, P. X. -K. [3 ]
Wang, P. [1 ]
机构
[1] Univ Illinois, Dept Stat, Champaign, IL 61820 USA
[2] Univ Waterloo, Dept Stat & Actuarial Sci, Waterloo, ON N2L 3G1, Canada
[3] Univ Michigan, Dept Biostat, Ann Arbor, MI 48109 USA
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
Inverse probability weight; Longitudinal data; Missing data; Quadratic inference function; LONGITUDINAL DATA; INFERENCE; MODELS;
D O I
10.1093/biomet/asq078
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The inverse probability weighted generalized estimating equations approach (Robins et al. 1994; Robins et al. 1995), effectively removes bias and provides valid statistical inference for regression parameter estimation in marginal models when longitudinal data contain missing values. The validity of the weighted generalized estimating equations regarding consistent estimation depends on whether the underlying missing data process is properly modelled. However, there is little work available to examine whether or not this condition holds. In this paper we propose a test constructed from two sets of estimating equations: one set is known to be unbiased, but the other set is not known. We utilize the quadratic inference function (Qu et al. 2000) method to assess their compatibility, which is equivalent to testing for the validity of the weighted generalized estimating equations approach. We conduct simulation studies to assess the performance of the proposed method. The test procedure is illustrated through a real data example.
引用
收藏
页码:215 / 224
页数:10
相关论文
共 20 条
[1]   Consistent moment selection procedures for generalized method of moments estimation [J].
Andrews, DWK .
ECONOMETRICA, 1999, 67 (03) :543-564
[2]   A comparison of multiple imputation and doubly robust estimation for analyses with missing data [J].
Carpenter, James R. ;
Kenward, Michael G. ;
Vansteelandt, Stijn .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2006, 169 :571-584
[3]   Weighted Generalized Estimating Functions for Longitudinal Response and Covariate Data That Are Missing at Random [J].
Chen, Baojiang ;
Yi, Grace Y. ;
Cook, Richard J. .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2010, 105 (489) :336-353
[4]   A test of missing completely at random for generalised estimating equations with missing data [J].
Chen, HY ;
Little, R .
BIOMETRIKA, 1999, 86 (01) :1-13
[5]   TESTING FOR RANDOM DROPOUTS IN REPEATED MEASUREMENT DATA [J].
DIGGLE, PJ .
BIOMETRICS, 1989, 45 (04) :1255-1258
[6]   Bias in estimating association parameters for longitudinal binary responses with drop-outs [J].
Fitzmaurice, GM ;
Lipsitz, SR ;
Molenberghs, G ;
Ibrahim, JG .
BIOMETRICS, 2001, 57 (01) :15-21
[7]   LARGE SAMPLE PROPERTIES OF GENERALIZED-METHOD OF MOMENTS ESTIMATORS [J].
HANSEN, LP .
ECONOMETRICA, 1982, 50 (04) :1029-1054
[8]   A CONTROLLED TRIAL COMPARING CONTINUED ZIDOVUDINE WITH DIDANOSINE IN HUMAN-IMMUNODEFICIENCY-VIRUS INFECTION [J].
KAHN, JO ;
LAGAKOS, SW ;
RICHMAN, DD ;
CROSS, A ;
PETTINELLI, C ;
LIOU, SH ;
BROWN, M ;
VOLBERDING, PA ;
CRUMPACKER, CS ;
BEALL, G ;
SACKS, HS ;
MERIGAN, TC ;
BELTANGADY, M ;
SMALDONE, L ;
DOLIN, R .
NEW ENGLAND JOURNAL OF MEDICINE, 1992, 327 (09) :581-587
[9]  
LIANG KY, 1986, BIOMETRIKA, V73, P13, DOI 10.1093/biomet/73.1.13
[10]   GEE with Gaussian estimation of the correlations when data are incomplete [J].
Lipsitz, SR ;
Molenberghs, G ;
Fitzmaurice, GM ;
Ibrahim, J .
BIOMETRICS, 2000, 56 (02) :528-536