INDUCTIVE LIMITS OF C*-ALGEBRAS AND COMPACT QUANTUM METRIC SPACES

被引:3
作者
Aguilar, Konrad [1 ]
机构
[1] Univ Southern Denm, Dept Math & Comp Sci IMADA, Campusvej 55, DK-5230 Odense M, Denmark
关键词
noncommutative metric geometry; Monge-Kantorovich distance; quantum metric spaces; Lip-norms; inductive limits; AF algebras;
D O I
10.1017/S1446788720000130
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a unital inductive limit of C*-algebras for which each C*-algebra of the inductive sequence comes equipped with a Rieffel compact quantum metric, we produce sufficient conditions to build a compact quantum metric on the inductive limit from the quantum metrics on the inductive sequence by utilizing the completeness of the dual Gromov-Hausdorff propinquity of Latremoliere on compact quantum metric spaces. This allows us to place new quantum metrics on all unital approximately finite-dimensional (AF) algebras that extend our previous work with Latremoliere on unital AF algebras with faithful tracial state. As a consequence, we produce a continuous image of the entire Fell topology on the ideal space of any unital AF algebra in the dual Gromov-Hausdorff propinquity topology.
引用
收藏
页码:289 / 312
页数:24
相关论文
共 42 条
[1]  
abrowski L. D, 2003, BANACH CENT PUBL, V61, P49
[2]  
Aguilar K, 2018, ARXIV170800595
[3]  
Aguilar K, 2016, ARXIV161202404
[4]   FELL TOPOLOGIES FOR AF-ALGEBRAS AND THE QUANTUM PROPINQUITY [J].
Aguilar, Konrad .
JOURNAL OF OPERATOR THEORY, 2019, 82 (02) :469-514
[5]   The Podles sphere as a spectral metric space [J].
Aguilar, Konrad ;
Kaad, Jens .
JOURNAL OF GEOMETRY AND PHYSICS, 2018, 133 :260-278
[6]   Quantum ultrametrics on AF algebras and the Gromov-Hausdorff propinquity [J].
Aguilar, Konrad ;
Latremoliere, Frederic .
STUDIA MATHEMATICA, 2015, 231 (02) :149-193
[7]  
[Anonymous], 1994, Non-Commutative Differential Geometry
[8]  
[Anonymous], 2004, Mem. Amer. Math. Soc
[9]  
[Anonymous], 2001, COURSE METRIC GEOMET
[10]   An AF algebra associated with the Farey tessellation [J].
Boca, Florin P. .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2008, 60 (05) :975-1000