PVDF-HFP based polymer electrolytes with high Li+ transference number enhancing the cycling performance and rate capability of lithium metal batteries

被引:69
作者
Wang, Yanyi [1 ,2 ]
Huang, Kaixiong [1 ]
Zhang, Peixin [1 ,2 ]
Li, Haowen [3 ,4 ]
Mi, Hongwei [1 ]
机构
[1] Shenzhen Univ, Coll Chem & Environm Engn, Shenzhen 518060, Peoples R China
[2] Xian Univ Architecture & Technol, Coll Mat Sci & Engn, Xian 710055, Peoples R China
[3] Micro Opt Instruments Shenzhen Inc, Shenzhen 518118, Peoples R China
[4] Guangdong Engn Res Ctr Intelligent Spect, Shenzhen, Peoples R China
基金
中国国家自然科学基金;
关键词
PVDF-HFP; Lithium montmorillonite; Li+ transference number; Lithium metal batteries; COMPOSITE; GENERATION; SEPARATOR;
D O I
10.1016/j.apsusc.2021.151593
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lithium metal batteries are confronted with safety issues in liquid electrolyte systems owing to rapid growth of lithium dendrite and uneven lithium deposition. Exploration of gel polymer electrolytes (GPEs) with excellent ionic conductivity and high Li+ migration number is a possible strategy to replace liquid electrolyte. Herein, a high-powered GPEs relied on poly (vinylidene fluoride-hexafluoro propylene) (PVDF-HFP) modified by polymer polyethylene glycol (PEG) and lithium montmorillonite (LiMNT) via bond interactions is reported. The prepared porous polymer electrolyte presents a captivating ionic conductivity of 1.82 x 10(-3) S.cm(-1) and lithium ions transference number up to 0.513 at 25 degrees C. In view of the eminent ionic conductivity and efficient migration number of Li+, the three-dimensional porous polymer electrolyte is very conducive to the fast transport and stable deposition of lithium ions, restraining the occurrence and growth rate of lithium dendrites, which improves the cycle performance and rate capability of lithium battery. LiFePO4 vertical bar PPL122 electrolyte vertical bar Li battery delivers a desired cycling performance with a capacity retention of 92% after 1000 cycles at 1 C.
引用
收藏
页数:10
相关论文
共 52 条
[1]   Multifunctional nanocomposite structural separators for energy storage [J].
Acauan, Luiz H. ;
Zhou, Yue ;
Kalfon-Cohen, Estelle ;
Fritz, Nathan K. ;
Wardle, Brian L. .
NANOSCALE, 2019, 11 (45) :21964-21973
[2]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[3]   Interface engineering on cathode side for solid garnet batteries [J].
Bi, Zhijie ;
Zhao, Ning ;
Ma, Lina ;
Fu, Zhengqian ;
Xu, Fangfang ;
Wang, Chunsheng ;
Guo, Xiangxin .
CHEMICAL ENGINEERING JOURNAL, 2020, 387
[4]   Batteries with high theoretical energy densities [J].
Cao, Wenzhuo ;
Zhang, Jienan ;
Li, Hong .
ENERGY STORAGE MATERIALS, 2020, 26 :46-55
[5]   ELECTROCHEMICAL ASPECTS OF THE GENERATION OF RAMIFIED METALLIC ELECTRODEPOSITS [J].
CHAZALVIEL, JN .
PHYSICAL REVIEW A, 1990, 42 (12) :7355-7367
[6]   Intercalated Electrolyte with High Transference Number for Dendrite-Free Solid-State Lithium Batteries [J].
Chen, Long ;
Li, Wenxin ;
Fan, Li-Zhen ;
Nan, Ce-Wen ;
Zhang, Qiang .
ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (28)
[7]   Dendrite-free Li metal deposition in all-solid-state lithium sulfur batteries with polymer-in-salt polysiloxane electrolyte [J].
Chen, Long ;
Fan, Li-Zhen .
ENERGY STORAGE MATERIALS, 2018, 15 :37-45
[8]   All solid state electrochromic devices based on the LiF electrolyte [J].
Chen, Xi ;
Dou, Shuliang ;
Li, Wenjie ;
Liu, Dongqi ;
Zhang, Yongfu ;
Zhao, Yingming ;
Li, Yao ;
Zhao, Jiupeng ;
Zhang, Xiang .
CHEMICAL COMMUNICATIONS, 2020, 56 (37) :5018-5021
[9]   Gel Polymer Electrolytes for Electrochemical Energy Storage [J].
Cheng, Xunliang ;
Pan, Jian ;
Zhao, Yang ;
Liao, Meng ;
Peng, Huisheng .
ADVANCED ENERGY MATERIALS, 2018, 8 (07)
[10]   A review on separators for lithium-sulfur battery: Progress and prospects [J].
Deng, Nanping ;
Kang, Weimin ;
Liu, Yanbo ;
Ju, Jingge ;
Wu, Dayong ;
Li, Lei ;
Hassan, Bukhari Samman ;
Cheng, Bowen .
JOURNAL OF POWER SOURCES, 2016, 331 :132-155