Subelliptic estimates on compact semisimple Lie groups

被引:2
作者
Domokos, Andras [1 ]
Esquerra, Roland [1 ]
Jaffa, Bob [1 ]
Schulte, Tom [1 ]
机构
[1] Calif State Univ Sacramento, Dept Math & Stat, Sacramento, CA 95819 USA
关键词
Semisimple; Compact Lie group; Cartan subalgebra; Root space decomposition; Subelliptic analysis;
D O I
10.1016/j.na.2011.04.025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider a natural subelliptic structure in semisimple, compact and connected Lie groups, and estimate the constant in the so-called subelliptic Friedrichs-Knapp-Stein inequality, which has implications in the regularity theory of p-energy minimizers. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:4642 / 4652
页数:11
相关论文
共 16 条
[1]  
[Anonymous], 1995, COURSE ABSTRACT HARM
[2]  
[Anonymous], 1971, Lecture Notes in Mathematics
[3]  
Chanillo S, 2010, APPL NUMER HARMON AN, P159, DOI 10.1007/978-0-8176-4588-5_8
[4]   Subelliptic Cordes estimates in the Grusin plane [J].
Di Fazio, G. ;
Domokos, A. ;
Fanciullo, M. S. ;
Manfredi, J. J. .
MANUSCRIPTA MATHEMATICA, 2006, 120 (04) :419-433
[5]   Subelliptic Cordes estimates [J].
Domokos, A ;
Manfredi, JJ .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (04) :1047-1056
[6]   On the regularity of subelliptic p-harmonic functions in Carnot groups [J].
Domokos, Andras .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 69 (5-6) :1744-1756
[7]   On the best constant for the Friedrichs-Knapp-Stein inequality in free nilpotent Lie groups of step two and applications to subelliptic PDE [J].
Domokos, Andras ;
Fanciullo, Maria Stella .
JOURNAL OF GEOMETRIC ANALYSIS, 2007, 17 (02) :245-252
[8]   Nonlinear subelliptic equations [J].
Domokos, Andras ;
Manfredi, Juan J. .
MANUSCRIPTA MATHEMATICA, 2009, 130 (02) :251-271
[9]  
Duistermaat JJ, 2000, Lie groups
[10]  
Faraut J, 2008, CAM ST AD M, V110, P1, DOI 10.1017/CBO9780511755170