Measurement-induced criticality in random quantum circuits

被引:323
作者
Jian, Chao-Ming [1 ,2 ]
You, Yi-Zhuang [3 ]
Vasseur, Romain [4 ]
Ludwig, Andreas W. W. [5 ]
机构
[1] Microsoft Quantum, Stn Q, Santa Barbara, CA 93106 USA
[2] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA
[3] Univ Calif San Diego, Dept Phys, San Diego, CA 92093 USA
[4] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA
[5] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
基金
美国国家科学基金会;
关键词
MANY-BODY LOCALIZATION; THERMALIZATION; PERCOLATION;
D O I
10.1103/PhysRevB.101.104302
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We investigate the critical behavior of the entanglement transition induced by projective measurements in (Haar) random unitary quantum circuits. Using a replica approach, we map the calculation of the entanglement entropies in such circuits onto a two-dimensional statistical-mechanics model. In this language, the area- to volume-law entanglement transition can be interpreted as an ordering transition in the statistical-mechanics model. We derive the general scaling properties of the entanglement entropies and mutual information near the transition using conformal invariance. We analyze in detail the limit of infinite on-site Hilbert space dimension in which the statistical-mechanics model maps onto percolation. In particular, we compute the exact value of the universal coefficient of the logarithm of subsystem size in the nth Renyi entropies for n >= 1 in this limit using relatively recent results for the conformal field theory describing the critical theory of two-dimensional (2D) percolation, and we discuss how to access the generic transition at finite on-site Hilbert space dimension from this limit, which is in a universality class different from 2D percolation. We also comment on the relation to the entanglement transition in random tensor networks, studied previously in Vasseur et al.
引用
收藏
页数:11
相关论文
共 64 条
[51]   Observation of many-body localization of interacting fermions in a quasirandom optical lattice [J].
Schreiber, Michael ;
Hodgman, Sean S. ;
Bordia, Pranjal ;
Lueschen, Henrik P. ;
Fischer, Mark H. ;
Vosk, Ronen ;
Altman, Ehud ;
Schneider, Ulrich ;
Bloch, Immanuel .
SCIENCE, 2015, 349 (6250) :842-845
[52]   Criterion for Many-Body Localization-Delocalization Phase Transition [J].
Serbyn, Maksym ;
Papic, Z. ;
Abanin, Dmitry A. .
PHYSICAL REVIEW X, 2015, 5 (04)
[53]   Local Conservation Laws and the Structure of the Many-Body Localized States [J].
Serbyn, Maksym ;
Papic, Z. ;
Abanin, Dmitry A. .
PHYSICAL REVIEW LETTERS, 2013, 111 (12)
[54]   Measurement-Induced Phase Transitions in the Dynamics of Entanglement [J].
Skinner, Brian ;
Ruhman, Jonathan ;
Nahum, Adam .
PHYSICAL REVIEW X, 2019, 9 (03)
[55]   CHAOS AND QUANTUM THERMALIZATION [J].
SREDNICKI, M .
PHYSICAL REVIEW E, 1994, 50 (02) :888-901
[56]   Entanglement transition from variable-strength weak measurements [J].
Szyniszewski, M. ;
Romito, A. ;
Schomerus, H. .
PHYSICAL REVIEW B, 2019, 100 (06)
[57]   Measurement-induced phase transition: A case study in the nonintegrable model by density-matrix renormalization group calculations [J].
Tang, Qicheng ;
Zhu, W. .
PHYSICAL REVIEW RESEARCH, 2020, 2 (01)
[58]   Many-Body Delocalization as a Quantum Avalanche [J].
Thiery, Thimothee ;
Huveneers, Francois ;
Mueller, Markus ;
De Roeck, Wojciech .
PHYSICAL REVIEW LETTERS, 2018, 121 (14)
[59]   Entanglement transitions from holographic random tensor networks [J].
Vasseur, Romain ;
Potter, Andrew C. ;
You, Yi-Zhuang ;
Ludwig, Andreas W. W. .
PHYSICAL REVIEW B, 2019, 100 (13)
[60]   Operator Hydrodynamics, OTOCs, and Entanglement Growth in Systems without Conservation Laws [J].
von Keyserlingk, C. W. ;
Rakovszky, Tibor ;
Pollmann, Frank ;
Sondhi, S. L. .
PHYSICAL REVIEW X, 2018, 8 (02)