Measurement and Monte Carlo modeling of the spatial response of scintillation screens

被引:3
|
作者
Pistrui-Maximean, S. A. [1 ]
Letang, J. M.
Freud, N.
Koch, A.
Walenta, A. H.
Montarou, G.
Babot, D.
机构
[1] Inst Natl Sci Appl, CNDRI, NDT Lab, F-69621 Villeurbanne, France
[2] Thales Electron Devices, F-38430 Moirans, France
[3] Univ Siegen, FB Phys, Detectors & Elect Dept, D-57068 Siegen, Germany
[4] Univ Blaise Pascal, Corpuscular Phys Lab, F-63177 Aubiere, France
关键词
phosphor screen; X-ray imaging; modulation transfer function (MTF); slit method; Monte Carlo simulation; geant4;
D O I
10.1016/j.nima.2007.07.153
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
In this article, we propose a detailed protocol to carry out measurements of the spatial response of scintillation screens and to assess the agreement with simulated results. The experimental measurements have been carried out using a practical implementation of the slit method. A Monte Carlo simulation model of scintillator screens, implemented with the toolkit Geant4, has been used to study the influence of the acquisition setup parameters and to compare with the experimental results. An algorithm of global stochastic optimization based on a localized random search method has been implemented to adjust the optical parameters (optical scattering and absorption coefficients). The algorithm has been tested for different X-ray tube voltages (40, 70 and 100 kV). A satisfactory convergence between the results simulated with the optimized model and the experimental measurements is obtained. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:719 / 727
页数:9
相关论文
共 50 条
  • [41] Modeling of betavoltaic cells GaN using a Monte Carlo calculation
    Tiouti, Z.
    Talhi, A.
    Azeddine, B.
    Helmaoui, A.
    JOURNAL OF OVONIC RESEARCH, 2022, 18 (05): : 691 - 697
  • [42] Monte Carlo autofluorescence modeling of cervical intraepithelial neoplasm progression
    Chu, S. C.
    Chiang, H. K.
    Wu, C. E.
    He, S. Y.
    Wang, D. Y.
    OPTICAL INTERACTIONS WITH TISSUE AND CELLS XVII, 2006, 6084
  • [43] Electron beam modeling and commissioning for Monte Carlo treatment planning
    Jiang, SB
    Kapur, A
    Ma, CM
    MEDICAL PHYSICS, 2000, 27 (01) : 180 - 191
  • [44] Monte Carlo Modeling of Free Radical Polymerization in Microflow Reactors
    Gao, Zehui
    He, Junpo
    MACROMOLECULAR REACTION ENGINEERING, 2015, 9 (05) : 431 - 441
  • [45] Modeling Joule Heating in Carbon Nanotubes with Monte Carlo Simulations
    Ragab, Tarek
    Basaran, Cemal
    2012 13TH IEEE INTERSOCIETY CONFERENCE ON THERMAL AND THERMOMECHANICAL PHENOMENA IN ELECTRONIC SYSTEMS (ITHERM), 2012, : 20 - 29
  • [46] Monte Carlo modeling of polarized light propagation in a biological tissue
    Gangnus, SV
    Matcher, SJ
    Meglinski, IV
    COHERENCE DOMAIN OPTICAL METHODS IN BIOMEDICAL SCIENCE AND CLINICAL APPLICATIONS VI, 2002, 4619 : 281 - 288
  • [47] Comparison of GUM and Monte Carlo methods for evaluating measurement uncertainty of perspiration measurement systems
    Chen, Andrew
    Chen, Chiachung
    MEASUREMENT, 2016, 87 : 27 - 37
  • [48] Aggregation modeling of calcium carbonate particles by Monte Carlo simulation
    Kazunori Kadota
    Takenobu Yamamoto
    Atsuko Shimosaka
    Yoshiyuki Shirakawa
    Jusuke Hidaka
    Masato Kouzu
    Journal of Nanoparticle Research, 2011, 13 : 7209 - 7218
  • [49] Monte Carlo modeling of radio-frequency breakdown in argon
    Puac, Marija
    Maric, Dragana
    Radmilovic-Radjenovic, Marija
    Suvakov, Milovan
    Petrovic, Zoran Lj
    PLASMA SOURCES SCIENCE & TECHNOLOGY, 2018, 27 (07)
  • [50] Water Distribution System Modeling and Simulation with Monte Carlo Method
    Shu, Shihu
    2011 INTERNATIONAL CONFERENCE ON ECONOMIC, EDUCATION AND MANAGEMENT (ICEEM2011), VOL II, 2011, : 202 - 205