Measurement and Monte Carlo modeling of the spatial response of scintillation screens

被引:3
|
作者
Pistrui-Maximean, S. A. [1 ]
Letang, J. M.
Freud, N.
Koch, A.
Walenta, A. H.
Montarou, G.
Babot, D.
机构
[1] Inst Natl Sci Appl, CNDRI, NDT Lab, F-69621 Villeurbanne, France
[2] Thales Electron Devices, F-38430 Moirans, France
[3] Univ Siegen, FB Phys, Detectors & Elect Dept, D-57068 Siegen, Germany
[4] Univ Blaise Pascal, Corpuscular Phys Lab, F-63177 Aubiere, France
关键词
phosphor screen; X-ray imaging; modulation transfer function (MTF); slit method; Monte Carlo simulation; geant4;
D O I
10.1016/j.nima.2007.07.153
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
In this article, we propose a detailed protocol to carry out measurements of the spatial response of scintillation screens and to assess the agreement with simulated results. The experimental measurements have been carried out using a practical implementation of the slit method. A Monte Carlo simulation model of scintillator screens, implemented with the toolkit Geant4, has been used to study the influence of the acquisition setup parameters and to compare with the experimental results. An algorithm of global stochastic optimization based on a localized random search method has been implemented to adjust the optical parameters (optical scattering and absorption coefficients). The algorithm has been tested for different X-ray tube voltages (40, 70 and 100 kV). A satisfactory convergence between the results simulated with the optimized model and the experimental measurements is obtained. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:719 / 727
页数:9
相关论文
共 50 条
  • [1] Monte Carlo calculation of the spatial response (Modulated Transfer Function) of a scintillation flat panel and comparison with experimental results
    Juste, Belen
    Miro, Rafael
    Monasor, Paula
    Verdu, Gumersindo
    RADIATION PHYSICS AND CHEMISTRY, 2015, 116 : 181 - 185
  • [2] Modeling granular phosphor screens by Monte Carlo methods
    Liaparinos, Panagiotis F.
    Kandarakis, Ioannis S.
    Cavouras, Dionisis A.
    Delis, Harry B.
    Panayiotakis, George S.
    MEDICAL PHYSICS, 2006, 33 (12) : 4502 - 4514
  • [3] Monte Carlo simulation of a plastic scintillator response function in β-γ coincidence measurement
    Ashrafi, S.
    Etesami, S. M.
    RADIATION MEASUREMENTS, 2008, 43 (9-10) : 1511 - 1514
  • [4] Monte Carlo simulation of a scintillation crystal read by a SiPM with GATE
    Mehadji, Brahim
    Dupont, Mathieu
    Fougeron, Denis
    Morel, Christian
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2023, 1048
  • [5] Experimental validation of Monte Carlo (MANTIS) simulated x-ray response of columnar CsI scintillator screens
    Freed, Melanie
    Miller, Stuart
    Tang, Katherine
    Badano, Aldo
    MEDICAL PHYSICS, 2009, 36 (11) : 4944 - 4956
  • [6] Modeling spatial reflection from an uncoated printing paper using Monte Carlo simulation
    Modric, Damir
    Maretic, Katja Petric
    Hladnik, Ales
    NORDIC PULP & PAPER RESEARCH JOURNAL, 2012, 27 (05) : 968 - 975
  • [7] Monte Carlo telescope performance modeling
    Hubbard, RP
    Oschmann, JM
    MODELING AND SYSTEMS ENGINEERING FOR ASTRONOMY, 2004, 5497 : 129 - 139
  • [8] Modeling spatial reflection from an uncoated printing paper using Monte Carlo simulation
    Modrić, Damir
    Maretić, Katja Petric
    Hladnik, Aleš
    Nordic Pulp and Paper Research Journal, 2012, 27 (05) : 968 - 975
  • [9] Response function and photon interaction of LaBr3:Ce and BGO scintillation detectors by Monte Carlo simulation
    Mutuwong C.
    Bootjomchai C.
    Chaiphaksa W.
    Yonphan S.
    Kothan S.
    Kaewkhao J.
    Optik, 2023, 289
  • [10] SPATIAL CORRELATIONS IN MONTE CARLO CRITICALITY SIMULATIONS
    Dumonteil, E.
    Malvagi, F.
    Zoia, A.
    Mazzolo, A.
    Artusio, D.
    Dieudonne, C.
    De Mulatier, C.
    SNA + MC 2013 - JOINT INTERNATIONAL CONFERENCE ON SUPERCOMPUTING IN NUCLEAR APPLICATIONS + MONTE CARLO, 2014,