Response surface method for optimization of phenolic compounds production by lignin pyrolysis

被引:27
作者
Jung, Kyung A. [1 ]
Nam, Chul Woo [1 ]
Woo, Seung Han [2 ]
Park, Jong Moon [1 ]
机构
[1] POSTECH, Div Adv Nucl Engn, Dept Chem Engn, Bioenergy Res Ctr, 77 Cheongam Ro, Pohang 37673, South Korea
[2] Hanbat Natl Univ, Dept Chem & Biol Engn, 125 Dongseodaero, Daejeon 34158, South Korea
基金
新加坡国家研究基金会;
关键词
Bio-oil; Lignin; Pyrolysis; Phenolic compound; Response surface methodology; Thermal decomposition; BOX-BEHNKEN DESIGN; HEATING RATE; BIO-OIL; TEMPERATURE; SYRINGOL; GUAIACOL;
D O I
10.1016/j.jaap.2016.06.011
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Lignin pyrolysis has a significant opportunity of producing commodityphenolic chemicals from natural biomass resources or industrial byproducts. Bio-oil production of lignin pyrolysis in a fixed-bed system was systematically characterized by response surface methodology (RSM) to optimize operating variables such as temperature, heating rate, and loading mass. According to the mathematical model of RSM, the predicted maximum bio-oil yield of 30.1% and the actual bio-oil yield of 29.3% were obtained under the optimum condition: 669 degrees C temperature, 15 degrees C/min heating rate, and 6.97 g loading mass. Temperature significantly influenced both the yield and the chemical composition of lignin bio-oils because pyrolytic decomposition of lignin consisted of temperature-dependent stepwise reactions. The bio-oil under the optimum condition produced not only the higher yield but also the higher content (43.2%) of the primary product (i.e., 2-methoxyphenol). (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:409 / 415
页数:7
相关论文
共 26 条
[1]   Optimization and characterization studies on bio-oil production from palm shell by pyrolysis using response surface methodology [J].
Abnisa, Faisal ;
Daud, W. M. A. Wan ;
Sahu, J. N. .
BIOMASS & BIOENERGY, 2011, 35 (08) :3604-3616
[2]  
Annadurai G, 1999, BIOPROCESS ENG, V21, P415
[3]  
Asmadi M, 2012, HOLZFORSCHUNG, V66, P323, DOI [10.1515/HF.2011.165, 10.1515/hf.2011.165]
[4]   Thermal reactions of guaiacol and syringol as lignin model aromatic nuclei [J].
Asmadi, Mohd ;
Kawamoto, Haruo ;
Saka, Shiro .
JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2011, 92 (01) :88-98
[5]   An overview of fast pyrolysis of biomass [J].
Bridgwater, AV ;
Meier, D ;
Radlein, D .
ORGANIC GEOCHEMISTRY, 1999, 30 (12) :1479-1493
[6]   The pyrolysis chemistry of a β-O-4 type oligomeric lignin model compound [J].
Chu, Sheng ;
Subrahmanyam, Ayyagari V. ;
Huber, George W. .
GREEN CHEMISTRY, 2013, 15 (01) :125-136
[7]   Production of H2 and medium Btu gas via pyrolysis of lignins in a fixed-bed reactor [J].
Ferdous, D ;
Dalai, AK ;
Bej, SK ;
Thring, RW ;
Bakhshi, NN .
FUEL PROCESSING TECHNOLOGY, 2001, 70 (01) :9-26
[8]   Box-Behnken design: An alternative for the optimization of analytical methods [J].
Ferreira, S. L. C. ;
Bruns, R. E. ;
Ferreira, H. S. ;
Matos, G. D. ;
David, J. M. ;
Brandao, G. C. ;
da Silva, E. G. P. ;
Portugal, L. A. ;
dos Reis, P. S. ;
Souza, A. S. ;
dos Santos, W. N. L. .
ANALYTICA CHIMICA ACTA, 2007, 597 (02) :179-186
[9]   A comparative study of straw, perennial grasses and hardwoods in terms of fast pyrolysis products [J].
Greenhalf, C. E. ;
Nowakowski, D. J. ;
Harms, A. B. ;
Titiloye, J. O. ;
Bridgwater, A. V. .
FUEL, 2013, 108 :216-230
[10]  
Hatakeyama H., 2009, BIOPOLYMERS