2-Deoxy-D-glucose couples mitochondrial DNA replication with mitochondrial fitness and promotes the selection of wild-type over mutant mitochondrial DNA

被引:17
|
作者
Pantic, Boris [1 ,11 ]
Ives, Daniel [1 ,11 ]
Mennuni, Mara [1 ,11 ]
Perez-Rodriguez, Diego [1 ,11 ]
Fernandez-Pelayo, Uxoa [2 ]
Lopez de Arbina, Amaia [2 ]
Munoz-Oreja, Mikel [2 ,3 ]
Villar-Fernandez, Marina [2 ]
Dang, Thanh-mai Julie [1 ]
Vergani, Lodovica [4 ]
Johnston, Iain G. [5 ]
Pitceathly, Robert D. S. [6 ]
McFarland, Robert [7 ]
Hanna, Michael G. [6 ]
Taylor, Robert W. [7 ]
Holt, Ian J. [1 ,2 ,8 ,9 ,10 ]
Spinazzola, Antonella [1 ]
机构
[1] UCL, Queen Sq Inst Neurol, Royal Free Campus, Dept Clin & Movement Neurosci, London NW3 2PF, England
[2] Biodonostia Hlth Res Inst, San Sebastian 20014, Spain
[3] Univ Basque Country, Med & Nursing Fac, Dept Pediat, Bilbao, Spain
[4] Univ Padua, Dept Neurosci, I-35128 Padua, Italy
[5] Univ Bergen, Fac Math & Nat Sci, N-5007 Bergen, Norway
[6] UCL, Queen Sq Inst Neurol, Dept Neuromuscular Dis, London WC1N 3BG, England
[7] Natl Hosp Neurol & Neurosurg, London WC1N 3BG, England
[8] Newcastle Univ, Fac Med Sci, Wellcome Ctr Mitochondrial Res, Translat & Clin Res Inst, Newcastle Upon Tyne NE2 4HH, Tyne & Wear, England
[9] Ikerbasque, Basque Fdn Sci, Bilbao 48013, Spain
[10] Inst Carlos III, Minist Econ & Competitiveness, CIBERNED, Ctr Networked Biomed Res Neurodegenerat Dis, Madrid 28031, Spain
[11] Univ Basque Country, Barrio Sarriena S-N, Bilbao 48940, Spain
基金
英国医学研究理事会; 欧洲研究理事会;
关键词
POLYCYSTIC KIDNEY-DISEASE; PROTEIN-SYNTHESIS; HUMAN-CELLS; MUTATION; MTDNA; SEGREGATION; METABOLISM; DEFECTS; GLYCOLYSIS; ADVANTAGE;
D O I
10.1038/s41467-021-26829-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
It has been a longstanding goal to promote the propagation of functional mitochondrial DNAs at the expense of pathological molecules in cells where the two species coexist. Here, the authors show that restricting the availability of glucose and glutamine can achieve this outcome. Pathological variants of human mitochondrial DNA (mtDNA) typically co-exist with wild-type molecules, but the factors driving the selection of each are not understood. Because mitochondrial fitness does not favour the propagation of functional mtDNAs in disease states, we sought to create conditions where it would be advantageous. Glucose and glutamine consumption are increased in mtDNA dysfunction, and so we targeted the use of both in cells carrying the pathogenic m.3243A>G variant with 2-Deoxy-D-glucose (2DG), or the related 5-thioglucose. Here, we show that both compounds selected wild-type over mutant mtDNA, restoring mtDNA expression and respiration. Mechanistically, 2DG selectively inhibits the replication of mutant mtDNA; and glutamine is the key target metabolite, as its withdrawal, too, suppresses mtDNA synthesis in mutant cells. Additionally, by restricting glucose utilization, 2DG supports functional mtDNAs, as glucose-fuelled respiration is critical for mtDNA replication in control cells, when glucose and glutamine are scarce. Hence, we demonstrate that mitochondrial fitness dictates metabolite preference for mtDNA replication; consequently, interventions that restrict metabolite availability can suppress pathological mtDNAs, by coupling mitochondrial fitness and replication.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] 2-Deoxy-D-glucose couples mitochondrial DNA replication with mitochondrial fitness and promotes the selection of wild-type over mutant mitochondrial DNA
    Boris Pantic
    Daniel Ives
    Mara Mennuni
    Diego Perez-Rodriguez
    Uxoa Fernandez-Pelayo
    Amaia Lopez de Arbina
    Mikel Muñoz-Oreja
    Marina Villar-Fernandez
    Thanh-mai Julie Dang
    Lodovica Vergani
    Iain G. Johnston
    Robert D. S. Pitceathly
    Robert McFarland
    Michael G. Hanna
    Robert W. Taylor
    Ian J. Holt
    Antonella Spinazzola
    Nature Communications, 12
  • [2] Inhibition of mitochondrial fission favours mutant over wild-type mitochondrial DNA
    Malena, Adriana
    Loro, Emanuele
    Di Re, Miriam
    Holt, Ian J.
    Vergani, Lodovica
    HUMAN MOLECULAR GENETICS, 2009, 18 (18) : 3407 - 3416
  • [3] Replication Pauses of the Wild-Type and Mutant Mitochondrial DNA Polymerase Gamma: A Simulation Study
    Song, Zhuo
    Cao, Yang
    Samuels, David C.
    PLOS COMPUTATIONAL BIOLOGY, 2011, 7 (11)
  • [4] HYBRIDIZATION OF MITOCHONDRIAL TRANSFER RNAS WITH MITOCHONDRIAL AND NUCLEAR DNA OF GRANDE (WILD-TYPE) YEAST
    CASEY, J
    COHEN, M
    RABINOWITZ, M
    GETZ, GS
    FUKUHARA, H
    JOURNAL OF MOLECULAR BIOLOGY, 1972, 63 (03) : 431 - +
  • [5] Analysis of mitochondrial DNA nucleoids in wild-type and a mutant strain of Saccharomyces cerevisiae that lacks the mitochondrial HMG box protein Abf2p
    Newman, SM
    ZelenayaTroitskaya, O
    Perlman, PS
    Butow, RA
    NUCLEIC ACIDS RESEARCH, 1996, 24 (02) : 386 - 393
  • [6] MITOCHONDRIAL GENOME OF WILD-TYPE YEAST-CELLS .2. INVESTIGATIONS ON COMPOSITIONAL HETEROGENEITY OF MITOCHONDRIAL-DNA
    PIPERNO, G
    FONTY, G
    BERNARDI, G
    JOURNAL OF MOLECULAR BIOLOGY, 1972, 65 (02) : 191 - &
  • [7] Preferential amplification and phenotypic selection in a population of deleted and wild-type mitochondrial DNA in cultured cells
    Spelbrink, JN
    Zwart, R
    VanGalen, MJM
    VandenBogert, C
    CURRENT GENETICS, 1997, 32 (02) : 115 - 124
  • [8] Preferential amplification and phenotypic selection in a population of deleted and wild-type mitochondrial DNA in cultured cells
    J. N. Spelbrink
    Rob Zwart
    Mieke J. M. Van Galen
    C. Van den Bogert
    Current Genetics, 1997, 32 : 115 - 124
  • [9] INTERACTION OF WILD-TYPE AND POKY MITOCHONDRIAL-DNA IN HETEROKARYONS OF NEUROSPORA
    MANNELLA, CA
    LAMBOWITZ, A
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1978, 80 (03) : 673 - 679
  • [10] Search for difference in aminoacylation of mitochondrial DNA-encoded wild-type and mutant human tRNALeu(UUR)
    Wang, ZC
    Wang, XM
    Jin, YX
    Jiao, BH
    Xu, F
    Miao, MY
    Zhu, KJ
    IUBMB LIFE, 2003, 55 (03) : 139 - 144