Orientable and nonorientable genera for some complete tripartite graphs

被引:9
作者
Kawarabayashi, K [1 ]
Stephens, C
Zha, XY
机构
[1] Tohoku Univ, Grad Sch Informat Sci, Aoba Ku, Sendai, Miyagi 9808597, Japan
[2] Vanderbilt Univ, Dept Math, Nashville, TN 37240 USA
[3] Middle Tennessee State Univ, Dept Math Sci, Murfreesboro, TN 37132 USA
关键词
complete tripartite graph; orientable genus; nonorientable genus;
D O I
10.1137/S0895480103429319
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we obtain three general reduction formulas to determine the orientable and nonorientable genera for complete tripartite graphs. As corollaries, we (1) reduce the determination of the orientable (nonorientable, respectively) genera of 75 percent (85 percent, respectively) of nonsymmetric (with respect to l, m, and n) K-l,K-m,K-n to that of K-m,K-m,K-n, and (2) determine the orientable and nonorientable genera for several classes of complete tripartite graphs.
引用
收藏
页码:479 / 487
页数:9
相关论文
共 16 条
[2]  
Craft D.L, 1991, THESIS W MICHIGAN U
[3]   On the genus of joins and compositions of graphs [J].
Craft, DL .
DISCRETE MATHEMATICS, 1998, 178 (1-3) :25-50
[4]  
ELLINGHAM MN, IN PRESS EUROPEAN J
[5]  
ELLINGHAM MN, UNPUB J COMBIN THE B
[6]  
Gross J.L., 1987, Topological graph theory
[7]  
HUNEKE JP, 1996, EMBEDDINGS 8 VERTEX
[8]  
MOHAR BOJAN, 2001, JH STUD MATH SCI
[9]   GENUS OF CONSTANT TRICOLORABLE GRAPH [J].
RINGEL, G ;
YOUNGS, JWT .
COMMENTARII MATHEMATICI HELVETICI, 1970, 45 (02) :152-&
[10]  
RINGEL G, 1965, J REINE ANGEW MATH, V220, P88