Nonhomogeneous Cahn-Hilliard fluids

被引:69
作者
Boyer, F [1 ]
机构
[1] Univ Bordeaux 1, F-33405 Talence, France
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 2001年 / 18卷 / 02期
关键词
nonhomogeneous Navier-Stokes equation; Cahn-Hilliard equation;
D O I
10.1016/S0294-1449(00)00063-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we are interested in the study of a model of nonhomogeneous diphasic incompressible flow, More precisely we consider a coupling of a Cahn-Hilliard and an incompressible Navier-Stokes equations where the densities of the phases are different. For this general model we can only show the local existence of a unique very regular solution and the existence of weaker solutions is still an open problem. But, if we look at the behavior of the system when the densities tends to be equal (slightly nonhomogeneous case), we show the existence of a global weak solution and of a unique local strong solution (which is in fact global in 2D). Finally, an asymptotic stability result for the metastable states: is shown in this slightly nonhomogeneous case. (C) 2001 Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:225 / 259
页数:35
相关论文
共 29 条
[1]  
Adams R., 1975, PURE APPL MATH, V65
[2]  
AGMON S, 1965, NOSTRAND MATH STUDIE, V2
[3]   SLOW MOTION FOR THE CAHN-HILLIARD EQUATION IN ONE SPACE DIMENSION [J].
ALIKAKOS, N ;
BATES, PW ;
FUSCO, G .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1991, 90 (01) :81-135
[4]   THE DYNAMICS OF NUCLEATION FOR THE CAHN-HILLIARD EQUATION [J].
BATES, PW ;
FIFE, PC .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1993, 53 (04) :990-1008
[5]  
Boyer F, 1999, ASYMPTOTIC ANAL, V20, P175
[6]  
BOYER F, 2000, IN PRESS COMPUTER FL
[7]   STRUCTURED PHASE-TRANSITIONS ON A FINITE INTERVAL [J].
CARR, J ;
GURTIN, ME ;
SLEMROD, M .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1984, 86 (04) :317-351
[8]   Mixing of a two-phase fluid by cavity flow [J].
Chella, R ;
Vinals, J .
PHYSICAL REVIEW E, 1996, 53 (04) :3832-3840
[9]  
COLIN A, COMMUNICATIONS
[10]   ON THE CAHN-HILLIARD EQUATION WITH A LOGARITHMIC FREE-ENERGY [J].
DEBUSSCHE, A ;
DETTORI, L .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1995, 24 (10) :1491-1514