On exact solutions for time-fractional Korteweg-de Vries and Korteweg-de Vries-Burger's equations using homotopy analysis transform method

被引:84
作者
Saad, K. M. [1 ,2 ]
AL-Shareef, Eman H. F. [1 ]
Alomari, A. K. [3 ]
Baleanu, Dumitru [4 ,5 ]
Gomez-Aguilar, J. F. [6 ]
机构
[1] Najran Univ, Dept Math, Collage Arts & Sci, Najran, Saudi Arabia
[2] Taiz Univ, Fac Appl Sci, Dept Math, Taizi, Yemen
[3] Yarmouk Univ, Fac Sci, Dept Math, Irbid, Jordan
[4] Cankaya Univ, Fac Sci, Dept Math, TR-06530 Ankara, Turkey
[5] Inst Space Sci, Magurele, Romania
[6] CONACyT Tecnol Nacl Mexico CENIDET, Interior Internado Palmira S-N, Cuernavaca 62490, Morelos, Mexico
关键词
Fractional calculus; Caputo fractional derivative; Homotopy analysis transform method; Korteweg-de Vries equation; Korteweg-de Vries-Burger's equation; TRAVELING-WAVE SOLUTIONS; ANALYTIC SOLUTION; HEAT-TRANSFER; PLASMA;
D O I
10.1016/j.cjph.2019.11.004
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we consider the homotopy analysis transform method (HATM) to solve the time fractional order Korteweg-de Vries (KdV) and Korteweg-de Vries-Burger's (KdVB) equations. The HATM is a combination of the Laplace decomposition method (LDM) and the homotopy analysis method (HAM). The fractional derivatives are defined in the Caputo sense. This method gives the solution in the form of a rapidly convergent series with h-curves are used to determine the intervals of convergent. Averaged residual errors are used to find the optimal values of h. It is found that the optimal h accelerates the convergence of the HATM, with the rate of convergence depending on the parameters in the KdV and KdVB equations. The HATM solutions are compared with exact solutions and excellent agreement is found.
引用
收藏
页码:149 / 162
页数:14
相关论文
共 47 条
[1]   Mathematical properties of h-curve in the frame work of the homotopy analysis method [J].
Abbasbandy, S. ;
Shivanian, E. ;
Vajravelu, K. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (11) :4268-4275
[2]   A One Step Optimal Homotopy Analysis Method for Propagation of Harmonic Waves in Nonlinear Generalized Magnetothermoelasticity with Two Relaxation Times under Influence of Rotation [J].
Abo-Dahab, S. M. ;
Mohamed, Mohamed S. ;
Nofal, T. A. .
ABSTRACT AND APPLIED ANALYSIS, 2013,
[3]  
[Anonymous], 1992, THESIS
[4]  
[Anonymous], 1993, An Introduction to the Fractional Calculus and Fractional Differential Equations
[5]  
[Anonymous], J FRACTIONAL CALCULU
[6]  
Caputo M., 1976, J R ASTRON SOC, V13, P529
[7]   Note on the Convergence Analysis of Homotopy Perturbation Method for Fractional Partial Differential Equations [J].
Elbeleze, Asma Ali ;
Kilicman, Adem ;
Taib, Bachok M. .
ABSTRACT AND APPLIED ANALYSIS, 2014,
[8]   On travelling wave solutions of the Burgers-Korteweg-de Vries equation [J].
Feng, Zhaosheng .
NONLINEARITY, 2007, 20 (02) :343-356
[9]   Traveling wave solutions to a reaction-diffusion equation [J].
Feng, Zhaosheng ;
Zheng, Shenzhou ;
Gao, David Y. .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2009, 60 (04) :756-773
[10]   Travelling wave solutions and proper solutions to the two-dimensional Burgers-Korteweg-de Vries equation [J].
Feng, ZS .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (33) :8817-8827