Single Image Super-Resolution: Depthwise Separable Convolution Super-Resolution Generative Adversarial Network

被引:10
|
作者
Jiang, Zetao [1 ]
Huang, Yongsong [1 ]
Hu, Lirui [2 ]
机构
[1] Guilin Univ Elect Technol Univ, Guangxi Key Lab Image & Graph Intelligent Proc, Guilin 541004, Peoples R China
[2] Beibu Gulf Univ, Coll Elect & Informat Engn, Qinzhou 535000, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2020年 / 10卷 / 01期
关键词
single image super-resolution; deep learning; depthwise separable convolution; generative adversarial networks; image processing;
D O I
10.3390/app10010375
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The super-resolution generative adversarial network (SRGAN) is a seminal work that is capable of generating realistic textures during single image super-resolution. However, the hallucinated details are often accompanied by unpleasant artifacts. To further enhance the visual quality, we propose a deep learning method for single image super-resolution (SR). Our method directly learns an end-to-end mapping between the low/high-resolution images. The method is based on depthwise separable convolution super-resolution generative adversarial network (DSCSRGAN). A new depthwise separable convolution dense block (DSC Dense Block) was designed for the generator network, which improved the ability to represent and extract image features, while greatly reducing the total amount of parameters. For the discriminator network, the batch normalization (BN) layer was discarded, and the problem of artifacts was reduced. A frequency energy similarity loss function was designed to constrain the generator network to generate better super-resolution images. Experiments on several different datasets showed that the peak signal-to-noise ratio (PSNR) was improved by more than 3 dB, structural similarity index (SSIM) was increased by 16%, and the total parameter was reduced to 42.8% compared with the original model. Combining various objective indicators and subjective visual evaluation, the algorithm was shown to generate richer image details, clearer texture, and lower complexity.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Multiattention Generative Adversarial Network for Remote Sensing Image Super-Resolution
    Jia, Sen
    Wang, Zhihao
    Li, Qingquan
    Jia, Xiuping
    Xu, Meng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [22] Spatial Transformer Generative Adversarial Network for Robust Image Super-Resolution
    Kasem, Hossam M.
    Hung, Kwok-Wai
    Jiang, Jianmin
    IEEE ACCESS, 2019, 7 : 182993 - 183009
  • [23] Super-Resolution Reconstruction Algorithm of Images Based on Improved Enhanced Super-Resolution Generative Adversarial Network
    Xin Yuanxue
    Zhu Fengting
    Shi Pengfei
    Yang Xin
    Zhou Runkang
    LASER & OPTOELECTRONICS PROGRESS, 2022, 59 (04)
  • [24] Generative Adversarial Network for Image Super-Resolution Combining Texture Loss
    Jiang, Yuning
    Li, Jinhua
    APPLIED SCIENCES-BASEL, 2020, 10 (05):
  • [25] Attention Fusion Generative Adversarial Network for Single-Image Super-Resolution Reconstruction
    Peng Yanfei
    Zhang Pingjia
    Gao Yi
    Zi Lingling
    LASER & OPTOELECTRONICS PROGRESS, 2021, 58 (20)
  • [26] Momentum feature comparison network based on generative adversarial network for single image super-resolution*,**
    Wang, Cailing
    Shen, Qi
    Wang, Xingbo
    Jiang, Guoping
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2022, 106
  • [27] Separable-spectral convolution and inception network for hyperspectral image super-resolution
    Zheng, Ke
    Gao, Lianru
    Ran, Qiong
    Cui, Ximin
    Zhang, Bing
    Liao, Wenzhi
    Jia, Sen
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2019, 10 (10) : 2593 - 2607
  • [28] Separable-spectral convolution and inception network for hyperspectral image super-resolution
    Ke Zheng
    Lianru Gao
    Qiong Ran
    Ximin Cui
    Bing Zhang
    Wenzhi Liao
    Sen Jia
    International Journal of Machine Learning and Cybernetics, 2019, 10 : 2593 - 2607
  • [29] Separable Modulation Network for Efficient Image Super-Resolution
    Wu, Zhijian
    Li, Jun
    Huang, Dingjiang
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 8086 - 8094
  • [30] Back-projection-based progressive growing generative adversarial network for single image super-resolution
    Tingsong Ma
    Wenhong Tian
    The Visual Computer, 2021, 37 : 925 - 938