Density Functional Theory Study of NHx (x=0-3) and N2 Adsorption on IrO2(110) Surfaces

被引:23
作者
Wang, Chia-Ching [1 ]
Siao, Shih Syong [1 ]
Jiang, Jyh-Chiang [1 ]
机构
[1] Natl Taiwan Univ Sci & Technol, Dept Chem Engn, Taipei 106, Taiwan
关键词
AMMONIA OXIDATION; AB-INITIO; CATALYTIC-REDUCTION; REACTION-MECHANISM; IRO2; NANOTUBES; DINITROGEN; NITROGEN; OXIDE; RUO2(110); ACTIVATION;
D O I
10.1021/jp1067846
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The oxidation of ammonia (NH3) and the reduction of nitrogen (N-2) are two important processes in chemistry. In this study, we used density functional theory calculations to investigate the adsorptions of NHx (x = 0-3) and N-2 on IrO2(110) surfaces, with density of states (DOS) analysis providing information relating to bond character and state interactions. These adsorbates have higher binding energies on the IrO2(110) surface than on the RuO2(110)) surface because the former forms stronger a bonds with the adsorbed molecules. The surface adsorptions of NH2 and NH on the IrO2(110) surface proceed with similar binding energies and similar hybridizations of the nitrogen atoms. In addition, the orientations of NH2 and NH adsorbed on the IrO2(110) surface are governed by lateral interactions with surface oxygen atoms (O(cus)or O-br), rather than by hydrogen bonding. We calculated the binding energy for the adsorption of N-2 on the IrO2(110) surface to be 1.10 eV. The weakening of the N N triple bond was evident from our DOS results; strong bonding forces, including sigma- and pi-type interactions, exist between the N-2 molecule and the surface, suggesting that N2 molecules are moderately activated by IrO2(110) surfaces.
引用
收藏
页码:18588 / 18593
页数:6
相关论文
共 57 条
[1]   Mechanism of molybdenum nitrogenase [J].
Burgess, BK ;
Lowe, DJ .
CHEMICAL REVIEWS, 1996, 96 (07) :2983-3011
[2]   Growth and characterization of vertically aligned self-assembled IrO2 nanotubes on oxide substrates [J].
Chen, RS ;
Chang, HM ;
Huang, YS ;
Tsai, DS ;
Chattopadhyay, S ;
Chen, KH .
JOURNAL OF CRYSTAL GROWTH, 2004, 271 (1-2) :105-112
[3]   Growth of well aligned IrO2 nanotubes on LiTaO3(012) substrate [J].
Chen, RS ;
Huang, YS ;
Tsai, DS ;
Chattopadhyay, S ;
Wu, CT ;
Lan, ZH ;
Chen, KH .
CHEMISTRY OF MATERIALS, 2004, 16 (12) :2457-2462
[4]   Deoxygenation of IrO2(110) surface: Core-level spectroscopy and density functional theory calculation [J].
Chung, Wen-Hung ;
Wang, Chia-Ching ;
Tsai, Dah-Shyang ;
Jiang, Jyh-Chiang ;
Cheng, Yu-Chang ;
Fan, Liang-Jen ;
Yang, Yaw-Wen ;
Huang, Ying-Sheng .
SURFACE SCIENCE, 2010, 604 (02) :118-124
[5]   SOLAR MODULATION IN A-WO3 A-IRO2 AND C-KXWO3+(X/2) A-IRO2 COMPLEMENTARY ELECTROCHROMIC WINDOWS [J].
COGAN, SF ;
PLANTE, TD ;
MCFADDEN, RS ;
RAUH, RD .
SOLAR ENERGY MATERIALS, 1987, 16 (05) :371-382
[6]   Stable deacon process for HCl oxidation over RuO2 [J].
Crihan, Daniela ;
Knapp, Marcus ;
Zweidingey, Stefan ;
Lundgren, Edvin ;
Weststrate, Cornelis J. ;
Andersen, Jesper N. ;
Seitsonen, Ari P. ;
Over, Herbert .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (11) :2131-2134
[7]   Structure-function relationships of alternative nitrogenases [J].
Eady, RR .
CHEMICAL REVIEWS, 1996, 96 (07) :3013-3030
[8]   ELECTRONIC SEMICONDUCTING OXIDES AS PH SENSORS [J].
FOG, A ;
BUCK, RP .
SENSORS AND ACTUATORS, 1984, 5 (02) :137-146
[9]   Alumina-supported Cu-Ag catalysts for ammonia oxidation to nitrogen at low temperature [J].
Gang, L ;
Anderson, BG ;
van Grondelle, J ;
van Santen, RA ;
van Gennip, WJH ;
Niemantsverdriet, JW ;
Kooyman, PJ ;
Knoester, A ;
Brongersma, HH .
JOURNAL OF CATALYSIS, 2002, 206 (01) :60-70
[10]   Electrochemical chlorine evolution at rutile oxide (110) surfaces [J].
Hansen, Heine A. ;
Man, Isabela C. ;
Studt, Felix ;
Abild-Pedersen, Frank ;
Bligaard, Thomas ;
Rossmeisl, Jan .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2010, 12 (01) :283-290