Fractional heat equations with subcritical absorption having a measure as initial data

被引:6
作者
Chen, Huyuan [1 ]
Veron, Laurent [2 ]
Wang, Ying [3 ]
机构
[1] Jiangxi Normal Univ, Dept Math, Nanchang 330022, Peoples R China
[2] Univ Tours, Lab Math & Phys Theor, Tours, France
[3] Univ Chile, Dept Ingn Matemat, Santiago, Chile
基金
中国国家自然科学基金;
关键词
Fractional heat equation; Dirac mass; Self-similar solution; ELLIPTIC-EQUATIONS; SINGULAR SOLUTIONS; POSITIVE SOLUTIONS; TRACE;
D O I
10.1016/j.na.2015.09.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study existence and uniqueness of weak solutions to (F) partial derivative(t)u+(-Delta)(alpha)u+h(t, u) = 0 in (0,infinity) xR(N), with initial condition u(0, center dot) -nu in R-N, where N >= 2, the operator (-Delta)(alpha) is the fractional Laplacian with alpha is an element of (0, 1), nu is a bounded Radon measure and h : (0,infinity) xR -> R is a continuous function satisfying a subcritical integrability condition. In particular, if h(t, u) = t(beta)u(p) with beta > -1 and 0 < p < p(beta)* := 1 + 2 alpha(1+beta)/N, we prove that there exists a unique weak solution u(k) to (F) with nu = k delta(0), where delta(0) is the Dirac mass at the origin. We obtain that u(k) -> infinity in (0,infinity) x R-N as k ->infinity for p is an element of 8. (0, 1] and the limit of u(k) exists as k -> infinity when 1 < p < p(beta)*, we denote it by u(infinity). When 1 + 2 alpha(1+beta)/N+2 alpha := p(beta)** < p < p(beta)*, u(infinity) is the minimal self-similar solution of (F)(infinity)partial derivative(t)u+(-Delta)(alpha)u+t(beta)u(p) = 0 in (0,infinity) xR(N) with the initial condition u(0, center dot) = 0 in R-N \{0} and it satisfies u(infinity)(0, x) = 0 for x not equal 0. While if 1 < p < p(beta)**, then u(infinity) = U-p, where U-p is the maximal solution of the differential equation y' + t(beta)y(p) = 0 on R+. (c) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:306 / 337
页数:32
相关论文
共 27 条
[1]   Initial trace of solutions of semilinear heat equations with absorption [J].
Al Sayed, Waad ;
Veron, Laurent .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 93 :197-225
[2]  
[Anonymous], 1998, An Introduction to Semilinear Evolution Equations
[3]   A Widder's Type Theorem for the Heat Equation with Nonlocal Diffusion [J].
Barrios, Begona ;
Peral, Ireneo ;
Soria, Fernando ;
Valdinoci, Enrico .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2014, 213 (02) :629-650
[4]  
Benilan P., 1975, ANN SCUOLA NORM SU S, V2, P523
[5]  
Blumenthal RM., 1960, T AM MATH SOC, V95, P263, DOI [DOI 10.1090/S0002-9947-1960-0119247-6, 10.1090/S0002-9947-1960-0119247-6]
[6]  
BREZIS H, 1983, J MATH PURE APPL, V62, P73
[7]  
BREZIS H, 1986, ARCH RATION MECH AN, V95, P185, DOI 10.1007/BF00251357
[8]  
Brezis H., 1973, NOTAS MATEMATICAS, V50
[9]   Regularity of solutions to the parabolic fractional obstacle problem [J].
Caffarelli, Luis ;
Figalli, Alessio .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2013, 680 :191-233
[10]   REGULARITY THEORY FOR PARABOLIC NONLINEAR INTEGRAL OPERATORS [J].
Caffarelli, Luis ;
Chan, Chi Hin ;
Vasseur, Alexis .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 24 (03) :849-869