Bent Vectorial Functions, Codes and Designs

被引:20
作者
Ding, Cunsheng [1 ]
Munemasa, Akihiro [2 ]
Tonchev, Vladimir D. [3 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Comp Sci & Engn, Hong Kong, Peoples R China
[2] Tohoku Univ, Grad Sch Informat Sci, Res Ctr Pure & Appl Math, Sendai, Miyagi 9808579, Japan
[3] Michigan Technol Univ, Dept Math Sci, Houghton, MI 49931 USA
关键词
Bent function; bent vectorial function; linear code; 2-design; QUASI-SYMMETRICAL DESIGNS; BOOLEAN FUNCTIONS; RANKS;
D O I
10.1109/TIT.2019.2922401
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Bent functions, or equivalently, Hadamard difference sets in the elementary Abelian group (GF(2(2m)),+), have been employed to construct symmetric and quasi-symmetric designs having the symmetric difference property. The main objective of this paper is to use bent vectorial functions for a construction of a two-parameter family of binary linear codes that do not satisfy the conditions of the Assmus-Mattson theorem, but nevertheless hold 2-designs. A new coding-theoretic characterization of bent vectorial functions is presented.
引用
收藏
页码:7533 / 7541
页数:9
相关论文
共 25 条
  • [1] Assmus E. F. Jr., 1969, Journal of Combinatorial Theory, Series A, V6, P122, DOI 10.1016/S0021-9800(69)80115-8
  • [2] Assmus Jr E.F., 1992, Designs and their Codes
  • [3] Beth T., 1999, Encyclopedia of Mathematics and its Applications
  • [4] On Boolean functions with the sum of every two of them being bent
    Bey, Christian
    Kyureghyan, Gohar M.
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2008, 49 (1-3) : 341 - 346
  • [5] The Magma algebra system .1. The user language
    Bosma, W
    Cannon, J
    Playoust, C
    [J]. JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (3-4) : 235 - 265
  • [6] Carlet Claude, 2010, International Journal of Information and Coding Theory, V1, P133, DOI 10.1504/IJICOT.2010.032131
  • [7] Four decades of research on bent functions
    Carlet, Claude
    Mesnager, Sihem
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2016, 78 (01) : 5 - 50
  • [8] Dillion J.F., 1987, P NSA MATH SCI M, P159
  • [9] Parameters of 2-Designs from Some BCH Codes
    Ding, Cunsheng
    Zhou, Zhengchun
    [J]. CODES, CRYPTOLOGY AND INFORMATION SECURITY, C2SI 2017, 2017, 10194 : 110 - 127
  • [10] Grassl M., CODE TABLES