A multi-source spatio-temporal data cube for large-scale geospatial analysis

被引:17
|
作者
Gao, Fan [1 ]
Yue, Peng [1 ,2 ,3 ,4 ]
Cao, Zhipeng [1 ]
Zhao, Shuaifeng [1 ]
Shangguan, Boyi [1 ]
Jiang, Liangcun [1 ]
Hu, Lei [1 ]
Fang, Zhe [1 ]
Liang, Zheheng
机构
[1] Wuhan Univ, Sch Remote Sensing & Informat Engn, Wuhan, Hubei, Peoples R China
[2] Collaborat Innovat Ctr Geospatial Technol, Wuhan, Hubei, Peoples R China
[3] Wuhan Univ, Hubei Prov Engn Ctr Intelligent Geoproc HPECIG, Wuhan, Hubei, Peoples R China
[4] South Digital Technol Co Ltd, Guangzhou, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Data cube; high-performance computing; earth observation; cloud computing; artificial intelligence; ANALYSIS READY DATA; EARTH; MODEL;
D O I
10.1080/13658816.2022.2087222
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Data management and analysis are challenging with big Earth observation (EO) data. Expanding upon the rising promises of data cubes for analysis-ready big EO data, we propose a new geospatial infrastructure layered over a data cube to facilitate big EO data management and analysis. Compared to previous work on data cubes, the proposed infrastructure, GeoCube, extends the capacity of data cubes to multi-source big vector and raster data. GeoCube is developed in terms of three major efforts: formalize cube dimensions for multi-source geospatial data, process geospatial data query along these dimensions, and organize cube data for high-performance geoprocessing. This strategy improves EO data cube management and keeps connections with the business intelligence cube, which provides supplementary information for EO data cube processing. The paper highlights the major efforts and key research contributions to online analytical processing for dimension formalization, distributed cube objects for tiles, and artificial intelligence enabled prediction of computational intensity for data cube processing. Case studies with data from Landsat, Gaofen, and OpenStreetMap demonstrate the capabilities and applicability of the proposed infrastructure.
引用
收藏
页码:1853 / 1884
页数:32
相关论文
共 50 条
  • [41] Analysis of spatio-temporal land-use patterns and the driving forces in Xi'an City using GEE and multi-source data
    Yang L.
    Zhang J.
    Gong E.
    Liu M.
    Ren J.
    Wang Y.
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2022, 38 (02): : 279 - 288
  • [42] A Large-Scale Spatio-Temporal Multimodal Fusion Framework for Traffic Prediction
    Zhou, Bodong
    Liu, Jiahui
    Cui, Songyi
    Zhao, Yaping
    BIG DATA MINING AND ANALYTICS, 2024, 7 (03): : 621 - 636
  • [43] The continuous spatio-temporal model (CSTM) as an exhaustive framework for multi-scale spatio-temporal analysis
    Van de Weghe, N.
    de Roo, B.
    Qiang, Y.
    Versichele, M.
    Neutens, T.
    de Maeyer, P.
    INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2014, 28 (05) : 1047 - 1060
  • [44] Obtaining scalable and accurate classification in large-scale spatio-temporal domains
    Vainer, Igor
    Kraus, Sarit
    Kaminka, Gal A.
    Slovin, Hamutal
    KNOWLEDGE AND INFORMATION SYSTEMS, 2011, 29 (03) : 527 - 564
  • [45] Spatio-temporal performance of large-scale Gezira Irrigation Scheme, Sudan
    Al Zayed, Islam Sabry
    Elagib, Nadir Ahmed
    Ribbe, Lars
    Heinrich, Juergen
    AGRICULTURAL SYSTEMS, 2015, 133 : 131 - 142
  • [46] A spatio-temporal ensemble method for large-scale traffic state prediction
    Liu, Yang
    Liu, Zhiyuan
    Vu, Hai L.
    Lyu, Cheng
    COMPUTER-AIDED CIVIL AND INFRASTRUCTURE ENGINEERING, 2020, 35 (01) : 26 - 44
  • [47] Learning Spatio-Temporal Aggregations for Large-Scale Capacity Expansion Problems
    Brenner, Aron
    Khorramfar, Rahman
    Amin, Saurabh
    PROCEEDINGS OF THE 2023 ACM/IEEE 14TH INTERNATIONAL CONFERENCE ON CYBER-PHYSICAL SYSTEMS, WITH CPS-IOTWEEK 2023, 2023, : 68 - 77
  • [48] Large-Scale Distributed Linkage of Records Containing Spatio-Temporal Information
    Karapiperis, Dimitrios
    Gkoulalas-Divanis, Aris
    Verykios, Vassilios S.
    2020 IEEE INTERNATIONAL SMART CITIES CONFERENCE (ISC2), 2020,
  • [49] PRACTICAL LARGE-SCALE SPATIO-TEMPORAL MODELING OF PARTICULATE MATTER CONCENTRATIONS
    Paciorek, Christopher J.
    Yanosky, Jeff D.
    Puett, Robin C.
    Laden, Francine
    Suh, Helen H.
    ANNALS OF APPLIED STATISTICS, 2009, 3 (01): : 370 - 397
  • [50] Obtaining scalable and accurate classification in large-scale spatio-temporal domains
    Igor Vainer
    Sarit Kraus
    Gal A. Kaminka
    Hamutal Slovin
    Knowledge and Information Systems, 2011, 29 : 527 - 564