A multi-source spatio-temporal data cube for large-scale geospatial analysis

被引:17
|
作者
Gao, Fan [1 ]
Yue, Peng [1 ,2 ,3 ,4 ]
Cao, Zhipeng [1 ]
Zhao, Shuaifeng [1 ]
Shangguan, Boyi [1 ]
Jiang, Liangcun [1 ]
Hu, Lei [1 ]
Fang, Zhe [1 ]
Liang, Zheheng
机构
[1] Wuhan Univ, Sch Remote Sensing & Informat Engn, Wuhan, Hubei, Peoples R China
[2] Collaborat Innovat Ctr Geospatial Technol, Wuhan, Hubei, Peoples R China
[3] Wuhan Univ, Hubei Prov Engn Ctr Intelligent Geoproc HPECIG, Wuhan, Hubei, Peoples R China
[4] South Digital Technol Co Ltd, Guangzhou, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Data cube; high-performance computing; earth observation; cloud computing; artificial intelligence; ANALYSIS READY DATA; EARTH; MODEL;
D O I
10.1080/13658816.2022.2087222
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Data management and analysis are challenging with big Earth observation (EO) data. Expanding upon the rising promises of data cubes for analysis-ready big EO data, we propose a new geospatial infrastructure layered over a data cube to facilitate big EO data management and analysis. Compared to previous work on data cubes, the proposed infrastructure, GeoCube, extends the capacity of data cubes to multi-source big vector and raster data. GeoCube is developed in terms of three major efforts: formalize cube dimensions for multi-source geospatial data, process geospatial data query along these dimensions, and organize cube data for high-performance geoprocessing. This strategy improves EO data cube management and keeps connections with the business intelligence cube, which provides supplementary information for EO data cube processing. The paper highlights the major efforts and key research contributions to online analytical processing for dimension formalization, distributed cube objects for tiles, and artificial intelligence enabled prediction of computational intensity for data cube processing. Case studies with data from Landsat, Gaofen, and OpenStreetMap demonstrate the capabilities and applicability of the proposed infrastructure.
引用
收藏
页码:1853 / 1884
页数:32
相关论文
共 50 条
  • [21] A tool for mapping and spatio-temporal analysis of hydrological data
    Guzman, J. A.
    Moriasi, D. N.
    Chu, M. L.
    Starks, P. J.
    Steiner, J. L.
    Gowda, P. H.
    ENVIRONMENTAL MODELLING & SOFTWARE, 2013, 48 : 163 - 170
  • [22] SPATIO-TEMPORAL ANALYSIS OF EYE FIXATIONS DATA IN IMAGES
    Sharma, Puneet
    Cheikh, Faouzi A.
    Hardeberg, Jon Y.
    2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 1150 - 1154
  • [23] Multi-source data fusion for economic data analysis
    Li, Menggang
    Wang, Fang
    Jia, Xiaojun
    Li, Wenrui
    Li, Ting
    Rui, Guangwei
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (10) : 4729 - 4739
  • [24] Navigating spatio-temporal data with temporal zoom and pan in a multi-touch environment
    Lee, Cassandra
    Devillers, Rodolphe
    Hoeber, Orland
    INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2014, 28 (05) : 1128 - 1148
  • [25] A Systematic Review of Multi-Scale Spatio-Temporal Crime Prediction Methods
    Du, Yingjie
    Ding, Ning
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2023, 12 (06)
  • [26] Multi-scale 4D localized spatio-temporal graph convolutional networks for spatio-temporal sequences forecasting in aluminum electrolysis
    Sun, Yubo
    Chen, Xiaofang
    Gui, Weihua
    Cen, Lihui
    Xie, Yongfang
    Zou, Zhong
    ADVANCED ENGINEERING INFORMATICS, 2025, 65
  • [27] Addressing spatio-temporal resolution constraints in Landsat and MODIS-based mapping of large-scale floodplain inundation dynamics
    Heimhuber, V.
    Tulbure, M. G.
    Broich, M.
    REMOTE SENSING OF ENVIRONMENT, 2018, 211 : 307 - 320
  • [28] Dealing With Large-Scale Spatio-Temporal Patterns in Imitative Interaction Between a Robot and a Human by Using the Predictive Coding Framework
    Hwang, Jungsik
    Kim, Jinhyung
    Ahmadi, Ahmadreza
    Choi, Minkyu
    Tani, Jun
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2020, 50 (05): : 1918 - 1931
  • [29] Spatio-temporal soil moisture patterns - A meta-analysis using plot to catchment scale data
    Korres, W.
    Reichenau, T. G.
    Fiener, P.
    Koyama, C. N.
    Bogena, H. R.
    Comelissen, T.
    Baatz, R.
    Herbst, M.
    Diekkrueger, B.
    Vereecken, H.
    Schneider, K.
    JOURNAL OF HYDROLOGY, 2015, 520 : 326 - 341
  • [30] A general conceptual framework for multi-dimensional spatio-temporal data sets
    Baumann, Peter
    ENVIRONMENTAL MODELLING & SOFTWARE, 2021, 143