A multi-source spatio-temporal data cube for large-scale geospatial analysis

被引:17
|
作者
Gao, Fan [1 ]
Yue, Peng [1 ,2 ,3 ,4 ]
Cao, Zhipeng [1 ]
Zhao, Shuaifeng [1 ]
Shangguan, Boyi [1 ]
Jiang, Liangcun [1 ]
Hu, Lei [1 ]
Fang, Zhe [1 ]
Liang, Zheheng
机构
[1] Wuhan Univ, Sch Remote Sensing & Informat Engn, Wuhan, Hubei, Peoples R China
[2] Collaborat Innovat Ctr Geospatial Technol, Wuhan, Hubei, Peoples R China
[3] Wuhan Univ, Hubei Prov Engn Ctr Intelligent Geoproc HPECIG, Wuhan, Hubei, Peoples R China
[4] South Digital Technol Co Ltd, Guangzhou, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Data cube; high-performance computing; earth observation; cloud computing; artificial intelligence; ANALYSIS READY DATA; EARTH; MODEL;
D O I
10.1080/13658816.2022.2087222
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Data management and analysis are challenging with big Earth observation (EO) data. Expanding upon the rising promises of data cubes for analysis-ready big EO data, we propose a new geospatial infrastructure layered over a data cube to facilitate big EO data management and analysis. Compared to previous work on data cubes, the proposed infrastructure, GeoCube, extends the capacity of data cubes to multi-source big vector and raster data. GeoCube is developed in terms of three major efforts: formalize cube dimensions for multi-source geospatial data, process geospatial data query along these dimensions, and organize cube data for high-performance geoprocessing. This strategy improves EO data cube management and keeps connections with the business intelligence cube, which provides supplementary information for EO data cube processing. The paper highlights the major efforts and key research contributions to online analytical processing for dimension formalization, distributed cube objects for tiles, and artificial intelligence enabled prediction of computational intensity for data cube processing. Case studies with data from Landsat, Gaofen, and OpenStreetMap demonstrate the capabilities and applicability of the proposed infrastructure.
引用
收藏
页码:1853 / 1884
页数:32
相关论文
共 50 条
  • [1] GeoCube: A spatio-temporal cube toward massive and multi-source EO data analysis
    Gao F.
    Yue P.
    Jiang L.
    Cao Z.
    Liang Z.
    Shangguan B.
    Hu L.
    Zhao S.
    National Remote Sensing Bulletin, 2022, 26 (06) : 1051 - 1066
  • [2] Urban Multi-Source Spatio-Temporal Data Analysis Aware Knowledge Graph Embedding
    Zhao, Ling
    Deng, Hanhan
    Qiu, Linyao
    Li, Sumin
    Hou, Zhixiang
    Sun, Hai
    Chen, Yun
    SYMMETRY-BASEL, 2020, 12 (02):
  • [3] Multi-Source Spatio-Temporal Data Fusion Path Estimation Method
    Hu, Qinying
    Sun, Gege
    Chen, Hang
    ELECTRONICS, 2025, 14 (04):
  • [4] Multi-source and heterogeneous marine hydrometeorology spatio-temporal data analysis with machine learning: a survey
    Wu, Song
    Li, Xiaoyong
    Dong, Wei
    Wang, Senzhang
    Zhang, Xiaojiang
    Xu, Zichen
    WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2023, 26 (03): : 1115 - 1156
  • [5] Multi-source and heterogeneous marine hydrometeorology spatio-temporal data analysis with machine learning: a survey
    Song Wu
    Xiaoyong Li
    Wei Dong
    Senzhang Wang
    Xiaojiang Zhang
    Zichen Xu
    World Wide Web, 2023, 26 : 1115 - 1156
  • [6] A Spatio-Temporal Prediction Method of Traffic Flow Based on Multi-Source Data
    Hu J.
    Gong Y.
    Cai S.
    Huang T.
    Qiche Gongcheng/Automotive Engineering, 2021, 43 (11): : 1662 - 1672
  • [7] GEOCUBE: TOWARDS THE MULTI-SOURCE GEOSPATIAL DATA CUBE IN BIG DATA ERA
    Yue, Peng
    Shangguan, Boyi
    Zhang, Mingda
    Gao, Fan
    Cao, Zhipeng
    Jiang, Liangcun
    Fang, Zhe
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 3127 - 3130
  • [8] An MSOM framework for multi-source fusion and spatio-temporal classification
    Wan, WJ
    Fraser, D
    IGARSS '97 - 1997 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, PROCEEDINGS VOLS I-IV: REMOTE SENSING - A SCIENTIFIC VISION FOR SUSTAINABLE DEVELOPMENT, 1997, : 1657 - 1659
  • [9] Prediction of Winter Wheat Yield Based on Fusing Multi-source Spatio-temporal Data
    Wang L.
    Zheng G.
    Guo Y.
    He J.
    Cheng Y.
    Nongye Jixie Xuebao/Transactions of the Chinese Society for Agricultural Machinery, 2022, 53 (01): : 198 - 204and458
  • [10] Spatio-Temporal Traffic Prediction of Wireless Communication Network Based on Multi-source Data
    Wang, Yu
    Sun, Yangyang
    Fan, Yanlin
    Jiang, Tao
    Xiong, Jiansheng
    Zhou, Ying
    Han, Zhibo
    IOT AS A SERVICE, IOTAAS 2023, 2025, 585 : 255 - 267