Lp-theory of elliptic differential operators with unbounded coefficients

被引:0
作者
Gherairi, K. [1 ]
Rabaoui, R. [1 ,2 ]
Saddi, A. [1 ]
机构
[1] Fac Sci, Dept Math, Gabes 6072, Tunisia
[2] Univ Tunis El Manar, Math Anal & Applicat Lab, LR11ES11, Fac Sci Tunis, El Manar 1, Tunis 2092, Tunisia
关键词
ANALYTICITY; SEMIGROUPS;
D O I
10.1007/s00233-017-9855-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the generation of strongly continuous analytic semigroups on L-p ((0,omega), mu(p) dx) and L-p((0,omega), dx), 1 < p < infinity , by a family of second order elliptic operators of the form A =1/rho d/dx (rho d/dx.) + Phi d/dx. - V(x). As in [24], we shall prove the generation results on L-2-spaces using the sesquilinear forms. More general results are obtained by using interpolation procedure and Neuberger's theorem.
引用
收藏
页码:83 / 108
页数:26
相关论文
共 28 条
[1]  
[Anonymous], 1996, FUNKC EKVACIOJ-SER I
[2]   The Laplacian with Wentzell-Robin boundary conditions on spaces of continuous functions [J].
Arendt, W ;
Metafune, G ;
Pallara, D ;
Romanelli, S .
SEMIGROUP FORUM, 2003, 67 (02) :247-261
[3]   Degenerate self-adjoint evolution equations on the unit interval [J].
Campiti, M ;
Metafune, G ;
Pallara, D .
SEMIGROUP FORUM, 1998, 57 (01) :1-36
[4]  
CHEBLI H, 1979, J MATH PURE APPL, V58, P1
[5]  
Cl?ment Ph., 1986, INDAG MATH, V48, P379
[6]  
Davies EB., 1989, HEAT KERNELS SPECTRA, DOI 10.1017/CBO9780511566158
[7]  
Diver F.W.J., 1974, ASYMPTOTICS SPECIAL, DOI 10.1201/9781439864548
[8]   Regularity of semigroups via the asymptotic behaviour at zero [J].
Fackler, Stephan .
SEMIGROUP FORUM, 2013, 87 (01) :1-17
[9]   Analytic semigroups on Lpw (0,1) and on Lp (0,1) generated by some classes of second order differential operators [J].
Favini, A ;
Goldstein, JA ;
Romanelli, S .
TAIWANESE JOURNAL OF MATHEMATICS, 1999, 3 (02) :181-210
[10]   The heat equation with generalized Wentzell boundary condition [J].
Favini, A ;
Goldstein, GR ;
Goldstein, JA ;
Romanelli, S .
JOURNAL OF EVOLUTION EQUATIONS, 2002, 2 (01) :1-19