Characterization of the complete plastome of Dysphania botrys, a candidate plant for cancer treatment

被引:5
作者
Chen, Yao [1 ,2 ]
Yang, Zhaoping [1 ]
机构
[1] Tarim Univ, Coll Life Sci, Soutern Hongqiao Rd 705, Alaer 843300, Xinjiang, Peoples R China
[2] Zhejiang Univ, Coll Life Sci, Lab Systemat & Evolutionary Bot & Biodivers, Hangzhou, Zhejiang, Peoples R China
来源
MITOCHONDRIAL DNA PART B-RESOURCES | 2018年 / 3卷 / 02期
基金
中国国家自然科学基金;
关键词
Dyphania botrys; chloroplast genome; phylogenomics; Amaranthaceae;
D O I
10.1080/23802359.2018.1530964
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Dysphania botrys belongs to Amaranthaceae and distributes in North Europe, Asia, and North America. It is a medicinal plant with diuretic, antispasmodic, carminative, antidiarrhoeic properties, and a candidate plant for cancer treatment. However, few studies focused on its phylogeny, and its taxonomic status is still controversial. To better understand the evolution of this species, the complete plastome of D. botrys was obtained by next-generation sequencing. It is the first plastome to be sequenced and reported in the genus Dysphania. The plastome is 152,055bp in length, which consists of a large single-copy region (LSC, 83,769bp; GC content: 34.7%), a small single-copy region (SSC, 17,916bp; GC content: 30.1%), and a pair of inverted repeat regions (IRs, 25,185bp; GC content: 42.7%). It harbors 112 unique genes, including 78 protein-coding genes, 30 transfer RNA genes, and four ribosomal RNA genes with an overall G+C content of 36.8%. The phylogeny of Amaranthaceae based on the complete plastome sequences of 13 taxa showed that D. botrys belong to subfamily Chenopodioideae. Chenopodioideae, together with Betoideae formed a sister clade to the three subfamilies (Salicornioideae, Suaedoideae, and Salsoloideae), and this sister clade formed an evolutionary sister clade to Amaranthoideae. Our data will largely enrich the genetic information of Dysphania botrys and facilitate future studies on its evolutionary status.
引用
收藏
页码:1214 / 1215
页数:2
相关论文
共 11 条
[1]  
Byng JW, 2016, BOT J LINN SOC, V181, P1, DOI [10.1111/boj.12385, 10.1111/j.1095-8339.2009.00996.x]
[2]   NOVOPlasty: de novo assembly of organelle genomes from whole genome data [J].
Dierckxsens, Nicolas ;
Mardulyn, Patrick ;
Smits, Guillaume .
NUCLEIC ACIDS RESEARCH, 2017, 45 (04)
[3]   A novel phylogeny-based generic classification for Chenopodium sensu lato, and a tribal rearrangement of Chenopodioideae (Chenopodiaceae) [J].
Fuentes-Bazan, Susy ;
Uotila, Pertti ;
Borsch, Thomas .
WILLDENOWIA, 2012, 42 (01) :5-24
[4]   Complete Chloroplast Genome Sequences and Comparative Analysis of Chenopodium quinoa and C. album [J].
Hong, Su-Young ;
Cheon, Kyeong-Sik ;
Yoo, Ki-Oug ;
Lee, Hyun-Oh ;
Cho, Kwang-Soo ;
Suh, Jong-Taek ;
Kim, Su-Jeong ;
Nam, Jeong-Hwan ;
Sohn, Hwang-Bae ;
Kim, Yul-Ho .
FRONTIERS IN PLANT SCIENCE, 2017, 8
[5]   Antimicrobial activity of Chenopodium botrys essential oil [J].
Maksimovic, ZA ;
Dordevic, S ;
Mraovic, MA .
FITOTERAPIA, 2005, 76 (01) :112-114
[6]  
Miller MA., 2010, Proceedings of the Gateway Computing Environments Workshop (GCE), V2010, P1, DOI DOI 10.1109/GCE.2010.5676129
[7]  
Morteza-Semnani K., 2015, PHARM BIOMED RES, V1, P1, DOI [10.18869/acadpub.pbr.1.2.1, DOI 10.18869/ACADPUB.PBR.1.2.1]
[8]   Phylogenetic Analyses of Amaranthaceae Based on matK DNA Sequence Data with Emphasis on West African Species [J].
Ogundipe, Oluwatoyin T. ;
Chase, Mark .
TURKISH JOURNAL OF BOTANY, 2009, 33 (03) :153-161
[9]   MrBayes 3: Bayesian phylogenetic inference under mixed models [J].
Ronquist, F ;
Huelsenbeck, JP .
BIOINFORMATICS, 2003, 19 (12) :1572-1574
[10]   RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies [J].
Stamatakis, Alexandros .
BIOINFORMATICS, 2014, 30 (09) :1312-1313