On new Galilei-invariant equations in two-dimensional spacetime

被引:4
|
作者
Lahno, VI [1 ]
机构
[1] Pedagog Inst, UA-314000 Poltava, Ukraine
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1998年 / 31卷 / 42期
关键词
D O I
10.1088/0305-4470/31/42/010
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study realizations of Galilei groups acting as transformation Lie groups in the space of two independent variables and one dependent variable. Classification of realizations of the Lie algebras AG(1)(1, 1), AG(2)(1, 1), AG(3)(1, 1), A (G) over tilde(1)(1, 1), A (G) over tilde(2)(1, 1) and A (G) over tilde(3)(1, 1) within the class of Lie vector fields is carried out. Utilizing the classification results we have constructed the full sets of second-order scalar differential equations in two-dimensional spacetime invariant under the Lie algebras AG(1)(1, 1) and A (G) over tilde(1)(1, 1).
引用
收藏
页码:8511 / 8519
页数:9
相关论文
共 50 条
  • [1] Galilei-invariant equations for massive fields
    Niederle, J.
    Nikitin, A. G.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (24)
  • [2] GALILEI-INVARIANT EQUATIONS WITH AN ANOMALOUS INTERACTION
    NIKITIN, AG
    UKRAINSKII FIZICHESKII ZHURNAL, 1981, 26 (03): : 394 - 402
  • [3] THE NONLINEAR GALILEI-INVARIANT GENERALIZATION OF LAME EQUATIONS
    FUSHCHICH, VI
    SLAVUTSKII, SL
    DOKLADY AKADEMII NAUK SSSR, 1986, 287 (02): : 320 - 323
  • [4] NELIEV REDUCTION OF GALILEI-INVARIANT SPINOR EQUATIONS
    ZHDANOV, RZ
    ANDREITSEV, AY
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1990, (07): : 8 - 11
  • [5] GALILEI-INVARIANT NONLINEAR-SYSTEMS OF EVOLUTION-EQUATIONS
    FUSHCHYCH, WI
    CHERNIHA, RM
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (19): : 5569 - 5579
  • [6] Generalized Galilei-invariant classical mechanics
    Woodcock, HW
    Havas, P
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2005, 20 (18): : 4259 - 4289
  • [7] Nonlinear Galilei-invariant PDEs with infinite-dimensional lie symmetry
    Cherniha, RM
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 253 (01) : 126 - 141
  • [8] GALILEI-INVARIANT SINGLE-PARTICLE ACTION
    CAWLEY, RG
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1973, 16 (01): : 173 - 187
  • [9] Invariant partial differential equations with two-dimensional exotic centrally extended conformal Galilei symmetry
    Aizawa, N.
    Kuznetsova, Z.
    Toppan, F.
    JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (04)
  • [10] SOME RESULTS IN GALILEI-INVARIANT FIELD-THEORIES
    KASHIWA, T
    SETO, K
    TAKAHASHI, Y
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1992, 107 (07): : 745 - 754