Effect of dual-doping on the thermoelectric transport properties of CaMn1-xNbx/2Tax/2O3

被引:10
作者
Bose, Rapaka S. C. [1 ]
Nag, Abanti [1 ]
机构
[1] CSIR, Div Mat Sci, Natl Aerosp Labs, Bangalore 560017, Karnataka, India
关键词
SUBSTITUTED CAMNO3; DOPED CAMNO3; POWER; HEAT; THERMOPOWER; NB;
D O I
10.1039/c6ra06032c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The dual-substituted CaMn1-xNbx/2Tax/2O3 is synthesized by solid-state reaction and it's crystal structure-thermoelectric property relationship is established. Rietveld refinement confirms the formation of a single phase orthorhombic structure with a gradual increase of cell parameters and bond lengths with doping level. The electrical resistivity (rho) shows non-metal like temperature dependence. The rho-value decreases with increasing doping level indicating an increase in charge-carrier concentration through formation of Mn3+ ions with e(g)(1) electron in the Mn4+ matrix of CaMn1-xNbx/2Tax/2O3. The shallow region observed around 500 K in the resistivity curve is interpreted as the formation of local charge-ordering clusters due to the presence of oxygen vacancies in CaMn1-xNbx/2Tax/2O3. The Seebeck coefficient initially decreases with temperature as expected from increasing charge carrier concentration. Above 600 K, the Seebeck coefficient increases with temperature as oxygen vacancies start playing the dominant role. The relatively low thermal conductivity of CaMn1-xNbx/2Tax/2O3 results from the damping of local vibration through substitution of heavier ions of Nb and Ta as well as crystallographic distortion. The dual-substituted CaMn1-xNbx/2Tax/2O3 shows a maximum power factor of 200 mW m(-1) K-2 and dimensionless figure-of-merit (ZT) of 0.15 at x = 0.04, arising from low electrical resistivity of 15 m Omega cm, a moderate Seebeck coefficient of-176 mu V K-1 and low thermal conductivity of 1.2 W m(-1) K-1.
引用
收藏
页码:52318 / 52325
页数:8
相关论文
共 53 条
[1]   POLARONS IN CRYSTALLINE AND NON-CRYSTALLINE MATERIALS [J].
AUSTIN, IG ;
MOTT, NF .
ADVANCES IN PHYSICS, 1969, 18 (71) :41-+
[2]   Cooling, heating, generating power, and recovering waste heat with thermoelectric systems [J].
Bell, Lon E. .
SCIENCE, 2008, 321 (5895) :1457-1461
[3]   Electronic transport of co-doped misfit-layered cobaltites [J].
Bhaskar, Ankam ;
Yang, Zong-Ren ;
Liu, Chia-Jyi .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2015, 26 (12) :9463-9469
[4]   CaMn1-xNbxO3 (x ≤ 0.08) perovskite-type phases as promising new high-temperature n-type thermoelectric materials [J].
Bocher, L. ;
Aguirre, M. H. ;
Logvinovich, D. ;
Shkabko, A. ;
Robert, R. ;
Trottmann, M. ;
Weidenkaff, A. .
INORGANIC CHEMISTRY, 2008, 47 (18) :8077-8085
[5]   Double-exchange interaction in electron-doped CaMnO3-delta perovskites [J].
Briatico, J ;
Alascio, B ;
Allub, R ;
Butera, A ;
Caneiro, A ;
Causa, MT ;
Tovar, M .
PHYSICAL REVIEW B, 1996, 53 (21) :14020-14023
[6]   THERMOPOWER IN CORRELATED HOPPING REGIME [J].
CHAIKIN, PM ;
BENI, G .
PHYSICAL REVIEW B, 1976, 13 (02) :647-651
[7]   Thermoelectric Properties of the Ca1-xRxMnO3 Perovskite System (R: Pr, Nd, Sm) for High-Temperature Applications [J].
Choi, Soon-Mok ;
Lim, Chang-Hyun ;
Seo, Won-Seon .
JOURNAL OF ELECTRONIC MATERIALS, 2011, 40 (05) :551-556
[8]   High-temperature thermoelectric properties of Ca1-xPrxMnO3-δ (0 ≤ x < 1) [J].
Cong, BT ;
Tsuji, T ;
Thao, PX ;
Thanh, PQ ;
Yamamura, Y .
PHYSICA B-CONDENSED MATTER, 2004, 352 (1-4) :18-23
[9]   Thermoelectric cooling and power generation [J].
DiSalvo, FJ .
SCIENCE, 1999, 285 (5428) :703-706
[10]   Oxide materials for high temperature thermoelectric energy conversion [J].
Fergus, Jeffrey W. .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2012, 32 (03) :525-540