Influence of high power impulse magnetron sputtering plasma ionization on the microstructure of TiN thin films

被引:109
|
作者
Ehiasarian, A. P. [1 ]
Vetushka, A. [1 ]
Gonzalvo, Y. Aranda [2 ]
Safran, G. [3 ]
Szekely, L. [3 ]
Barna, P. B. [3 ]
机构
[1] Sheffield Hallam Univ, Nanotechnol Ctr PVD Res, Mat & Engn Inst, Howard St, Sheffield S1 1WB, S Yorkshire, England
[2] Hiden Analyt Ltd, Plasma & Surface Div, Warrington WA5 7UN, Cheshire, England
[3] Res Inst Tech Phys & Mat Sci, H-1525 Budapest, Hungary
基金
英国工程与自然科学研究理事会;
关键词
PREFERRED ORIENTATION; ENERGY-DISTRIBUTION; SURFACE-MORPHOLOGY; STRESS GENERATION; GROWTH; OXYGEN; LAYERS; DEPOSITION; DENSITIES; TIN(111);
D O I
10.1063/1.3579443
中图分类号
O59 [应用物理学];
学科分类号
摘要
HIPIMS (High Power Impulse Magnetron Sputtering) discharge is a new PVD technology for the deposition of high-quality thin films. The deposition flux contains a high degree of metal ionization and nitrogen dissociation. The microstructure of HIPIMS-deposited nitride films is denser compared to conventional sputter technologies. However, the mechanisms acting on the microstructure, texture and properties have not been discussed in detail so far. In this study, the growth of TIN by HIPIMS of Ti in mixed Ar and N-2 atmosphere has been investigated. Varying degrees of metal ionization and nitrogen dissociation were produced by increasing the peak discharge current (I-d) from 5 to 30 A. The average power was maintained constant by adjusting the frequency. Mass spectrometry measurements of the deposition flux revealed a high content of ionized film-forming species, such as Ti1+, Ti2+ and atomic nitrogen N1+. Ti1+ ions with energies up to 50 eV were detected during the pulse with reducing energy in the pulse-off times. Langmuir probe measurements showed that the peak plasma density during the pulse was 3 x 10(16) m(-3). Plasma density, and ion flux ratios of N1+ : N-2(1+) and Ti1+:Ti-0 increased linearly with peak current. The ratios exceeded 1 at 30 A. TIN films deposited by HIRIMS were analyzed by X-ray diffraction, and transmission electron microscopy. At high I-d, N1+:N-2(1+) > 1 and Ti1+:Ti-0 > 1 were produced; a strong 002 texture was present and column boundaries in the films were atomically tight. As I-d reduced and N1+: N-2(1+) and Ti1+:Ti-0 dropped below 1, the film texture switched to strong 111 with a dense structure. At very low I-d, porosity between columns developed. The effects of the significant activation of the deposition flux observed in the HIPIMS discharge on the film texture, microstructure, morphology and properties are discussed. (C) 2011 American Institute of Physics. [doi :10.1063/1.3579443]
引用
收藏
页数:15
相关论文
共 50 条
  • [21] AlN films deposited by dc magnetron sputtering and high power impulse magnetron sputtering for SAW applications
    Aissa, K. Ait
    Achour, A.
    Elmazria, O.
    Simon, Q.
    Elhosni, M.
    Boulet, P.
    Robert, S.
    Djouadi, M. A.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2015, 48 (14)
  • [22] Plasma potential mapping of high power impulse magnetron sputtering discharges
    Rauch, Albert
    Mendelsberg, Rueben J.
    Sanders, Jason M.
    Anders, Andre
    JOURNAL OF APPLIED PHYSICS, 2012, 111 (08)
  • [23] Correlation between sputtering method, microstructure and properties of TiOx thin films deposited by reactive direct-current and high-power impulse magnetron sputtering
    Lablali, Younes
    Oubaki, Rachid
    Ghailane, Anas
    Alami, Jones
    Makha, Mohammed
    THIN SOLID FILMS, 2024, 808
  • [24] Low friction CrN/TiN multilayer coatings prepared by a hybrid high power impulse magnetron sputtering/DC magnetron sputtering deposition technique
    Paulitsch, J.
    Schenkel, M.
    Schintlmeister, A.
    Hutter, H.
    Mayrhofer, P. H.
    THIN SOLID FILMS, 2010, 518 (19) : 5553 - 5557
  • [25] Textured hexagonal and cubic phases of AlN films deposited on Si (100) by DC magnetron sputtering and high power impulse magnetron sputtering
    Riah, B.
    Ayad, A.
    Camus, J.
    Rammal, M.
    Boukari, F.
    Chekour, L.
    Djouadi, M. A.
    Rouag, N.
    THIN SOLID FILMS, 2018, 655 : 34 - 40
  • [26] High-power impulse magnetron sputtering and its applications
    Ehiasarian, Arutiun P.
    PURE AND APPLIED CHEMISTRY, 2010, 82 (06) : 1247 - 1258
  • [27] Sputtering Power on the Microstructure and Properties of MgF2 Thin Films Prepared with Magnetron Sputtering
    Zhao Changjiang
    Ma Chao
    Liu Juncheng
    Liu Zhigang
    Chen Yan
    JOURNAL OF INORGANIC MATERIALS, 2020, 35 (09) : 1064 - 1070
  • [28] A parametric model for reactive high-power impulse magnetron sputtering of films
    Kozak, Tomas
    Vlcek, Jaroslav
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2016, 49 (05)
  • [29] CuO films deposited by superimposed high power impulse and DC magnetron sputtering
    Semenov, V. A.
    Grenadyorov, A. S.
    Oskirko, V. O.
    Zakharov, A. N.
    Rabotkin, S. V.
    Ionov, I. V.
    Solovyev, A. A.
    14TH INTERNATIONAL CONFERENCE GAS DISCHARGE PLASMAS AND THEIR APPLICATIONS, 2019, 1393
  • [30] Impact of high-power impulse magnetron sputtering pulse width on the nucleation, crystallization, microstructure, and ferroelectric properties of hafnium oxide thin films
    Jaszewski, Samantha T.
    Fields, Shelby S.
    Chung, Ching-Chang
    Jones, Jacob L.
    Orson, Keithen G.
    Reinke, Petra
    Ihlefeld, Jon F.
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2024, 42 (02):