Numerical approximation of free boundary problem by variational inequalities - Application to semiconductor devices

被引:0
作者
Cecchi, MM [1 ]
Russo, R [1 ]
机构
[1] Univ Padua, Dipartimento Matemat Pura & Applicata, I-35131 Padua, Italy
来源
VARIATIONAL ANALYSIS AND APPLICATIONS | 2005年 / 79卷
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we treat problem arasing in sermiconductor theory from a mathematical and numerical point of view, in particular we consider a boundary value problem with unknown interfaces arising by the determination of the depletion layer in the most basic semiconductor device namely the p-n junction diode. We present the numerical approximation of free boundary problem with double obstacle treated with quasi-variational inequalities. We deal with the L-infinity convergence of the standard finite element approximation of the system of quasi-variational inequalities.
引用
收藏
页码:697 / 722
页数:26
相关论文
共 28 条
[1]  
[Anonymous], 1991, FINITE ELEMENT METHO
[2]  
Baiocchi C., 1977, Mathematical Aspects of Finite Element Methods, V606, P27
[3]  
BAIOCCHI C, 1973, ANN MAT PUR APPL, V4, P1
[4]  
BENSOUSSAN A, 1973, CR ACAD SCI A MATH, V276, P1279
[5]  
Bensoussan A., 1978, Applications des Inequations Varitionelles en Controle Stochastique
[6]  
Bensoussan A., 1984, IMPULSE CONTROL QUAS
[7]   The noncoercive quasi-variational inequalities related to impulse control problems [J].
Boulbrachene, M .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1998, 35 (12) :101-108
[8]   The finite element approximation of Hamilton-Jacobi-Bellman equations [J].
Boulbrachene, M ;
Haiour, M .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2001, 41 (7-8) :993-1007
[9]  
BREZZI F, 1983, RAIRO-ANAL NUMER-NUM, V17, P385
[10]  
BRUCH JC, 1992, NONLINEAR MATH PROBL, V1, P281