Ion sieving in graphene oxide membranes via cationic control of interlayer spacing

被引:1521
作者
Chen, Liang [1 ,2 ,3 ,4 ]
Shi, Guosheng [2 ,3 ]
Shen, Jie [5 ]
Peng, Bingquan [1 ]
Zhang, Bowu [2 ,3 ]
Wang, Yuzhu [2 ,3 ]
Bian, Fenggang [2 ,3 ]
Wang, Jiajun [1 ]
Li, Deyuan [1 ,2 ,3 ]
Qian, Zhe [1 ]
Xu, Gang [1 ]
Liu, Gongping [5 ]
Zeng, Jianrong [2 ,3 ]
Zhang, Lijuan [2 ,3 ]
Yang, Yizhou [2 ,3 ]
Zhou, Guoquan [4 ]
Wu, Minghong [1 ]
Jin, Wanqin [5 ]
Li, Jingye [2 ,3 ]
Fang, Haiping [2 ,3 ]
机构
[1] Shanghai Univ, Shanghai Appl Radiat Inst, Shanghai 200444, Peoples R China
[2] Chinese Acad Sci, Shanghai Inst Appl Phys, Div Interfacial Water, Key Lab Interfacial Phys & Technol, Shanghai 201800, Peoples R China
[3] Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai Synchrotron Radiat Facil, Shanghai 201800, Peoples R China
[4] Zhejiang A&F Univ, Zhejiang Prov Key Lab Chem Utilizat Forestry Biom, Linan 311300, Zhejiang, Peoples R China
[5] Nanjing Tech Univ, Jiangsu Natl Synerget Innovat Ctr Adv Mat, State Key Lab Mat Oriented Chem Engn, 5 Xinmofan Rd, Nanjing 210009, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
CARBON NANOTUBES; LAYERED GRAPHENE; POROUS GRAPHENE; TRANSPORT; SEPARATION; MECHANISM; ULTRATHIN; FUTURE;
D O I
10.1038/nature24044
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Graphene oxide membranes-partially oxidized, stacked sheets of graphene(1)-can provide ultrathin, high-flux and energy-efficient membranes for precise ionic and molecular sieving in aqueous solution(2-6). These materials have shown potential in a variety of applications, including water desalination and purification(7-9), gas and ion separation(10-13), biosensors(14), proton conductors(15), lithium-based batteries(16) and super-capacitors(17). Unlike the pores of carbon nanotube membranes, which have fixed sizes(18-20), the pores of graphene oxide membranes-that is, the interlayer spacing between graphene oxide sheets (a sheet is a single flake inside the membrane)-are of variable size. Furthermore, it is difficult to reduce the interlayer spacing sufficiently to exclude small ions and to maintain this spacing against the tendency of graphene oxide membranes to swell when immersed in aqueous solution(21-25). These challenges hinder the potential ion filtration applications of graphene oxide membranes. Here we demonstrate cationic control of the interlayer spacing of graphene oxide membranes with angstrom precision using K+, Na+, Ca2+, Li+ or Mg2+ ions. Moreover, membrane spacings controlled by one type of cation can efficiently and selectively exclude other cations that have larger hydrated volumes. First-principles calculations and ultraviolet absorption spectroscopy reveal that the location of the most stable cation adsorption is where oxide groups and aromatic rings coexist. Previous density functional theory computations show that other cations (Fe2+, Co2+, Cu2+, Cd2+, Cr2+ and Pb2+) should have a much stronger cation-pi interaction with the graphene sheet than Na+ has(26), suggesting that other ions could be used to produce a wider range of interlayer spacings.
引用
收藏
页码:415 / 418
页数:4
相关论文
共 31 条
[1]  
Abraham J, 2017, NAT NANOTECHNOL, V12, P546, DOI [10.1038/nnano.2017.21, 10.1038/NNANO.2017.21]
[2]   Ultimate Permeation Across Atomically Thin Porous Graphene [J].
Celebi, Kemal ;
Buchheim, Jakob ;
Wyss, Roman M. ;
Droudian, Amirhossein ;
Gasser, Patrick ;
Shorubalko, Ivan ;
Kye, Jeong-Il ;
Lee, Changho ;
Park, Hyung Gyu .
SCIENCE, 2014, 344 (6181) :289-292
[3]   Carbon Nanotubes: Present and Future Commercial Applications [J].
De Volder, Michael F. L. ;
Tawfick, Sameh H. ;
Baughman, Ray H. ;
Hart, A. John .
SCIENCE, 2013, 339 (6119) :535-539
[4]   Preparation and characterization of graphene oxide paper [J].
Dikin, Dmitriy A. ;
Stankovich, Sasha ;
Zimney, Eric J. ;
Piner, Richard D. ;
Dommett, Geoffrey H. B. ;
Evmenenko, Guennadi ;
Nguyen, SonBinh T. ;
Ruoff, Rodney S. .
NATURE, 2007, 448 (7152) :457-460
[5]   The Future of Seawater Desalination: Energy, Technology, and the Environment [J].
Elimelech, Menachem ;
Phillip, William A. .
SCIENCE, 2011, 333 (6043) :712-717
[6]   Designing the Next Generation of Chemical Separation Membranes [J].
Gin, Douglas L. ;
Noble, Richard D. .
SCIENCE, 2011, 332 (6030) :674-676
[7]   All-Carbon Nanoarchitectures as High-Performance Separation Membranes with Superior Stability [J].
Goh, Kunli ;
Jiang, Wenchao ;
Karahan, Huseyin Enis ;
Zhai, Shengli ;
Wei, Li ;
Yu, Dingshan ;
Fane, Anthony G. ;
Wang, Rong ;
Chen, Yuan .
ADVANCED FUNCTIONAL MATERIALS, 2015, 25 (47) :7348-7359
[8]   Ultrathin Graphene Nanofiltration Membrane for Water Purification [J].
Han, Yi ;
Xu, Zhen ;
Gao, Chao .
ADVANCED FUNCTIONAL MATERIALS, 2013, 23 (29) :3693-3700
[9]   Ultrafast viscous water flow through nanostrand-channelled graphene oxide membranes [J].
Huang, Hubiao ;
Song, Zhigong ;
Wei, Ning ;
Shi, Li ;
Mao, Yiyin ;
Ying, Yulong ;
Sun, Luwei ;
Xu, Zhiping ;
Peng, Xinsheng .
NATURE COMMUNICATIONS, 2013, 4
[10]   A Graphene Oxide Membrane with Highly Selective Molecular Separation of Aqueous Organic Solution [J].
Huang, Kang ;
Liu, Gongping ;
Lou, Yueyun ;
Dong, Ziye ;
Shen, Jie ;
Jin, Wanqin .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2014, 53 (27) :6929-6932