Straightforward Synthesis of Hierarchically Porous Nitrogen-Doped Carbon via Pyrolysis of Chitosan/Urea/KOH Mixtures and Its Application as a Support for Formic Acid Dehydrogenation Catalysts

被引:78
作者
Lee, Dong-Wook [1 ]
Jin, Min-Ho [1 ]
Oh, Duckkyu [1 ]
Lee, Sung-Wook [1 ]
Park, Jong-Soo [1 ]
机构
[1] KIER, Adv Mat & Devices Lab, 152 Gajeongro, Daejeon 305343, South Korea
关键词
Chitosan; Urea; Hierarchically porous carbon; Nitrogen-doped carbon; Formic acid dehydrogenation; HIGH-SURFACE-AREA; OXYGEN REDUCTION REACTION; REDUCED GRAPHENE OXIDE; HYDROGEN GENERATION; METAL NANOPARTICLES; CO2; ADSORPTION; PERFORMANCE; NANOSHEETS; BIOMASS; FACILE;
D O I
10.1021/acssuschemeng.7b01888
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The development of cheap, simple, and green synthetic methods for hierarchically porous nitrogen-doped carbon, especially derived from renewable biomass, such as chitosan, remains a challenging topic. Here, we first synthesized hierarchically porous nitrogen-doped carbon (KIE-8) having graphene-like structure via simple pyrolysis of a chitosan/urea/KOH mixture without any conventional sophisticated treatments, such as freeze-drying, hydrothermal carbonization, and soft or hard templating. On the basis of various analyses of KIE-8, we demonstrated that effect of urea on mesopore formation was insignificant; however, when KOH is used as an activating agent in the presence of urea, a large amount of mesopores can be created along with conventional KOH-derived micropores. In addition, it was revealed that chitosan-derived carbon nanosheets directed by urea are torn into chitosan-derived carbon nanoflakes via KOH activation, and mesopores originate from interstitial voids in aggregates of the carbon nanoflakes, and micropores are derived from in-plane pores in each nanoflake. KIE-8 was used as a catalyst support for formic acid dehydrogenation at room-temperature. Pd(6 wt %)/KIE-8 catalysts provided excellent catalytic activity (TOP = 280.7 mol H-2 mol metal(-1) h(-1)), and we demonstrated that the pore structure and nitrogen structure of KIE-8 are crucial factors to determine the catalytic activity.
引用
收藏
页码:9935 / 9944
页数:10
相关论文
共 49 条
[1]   Carbon Aerogels with Excellent CO2 Adsorption Capacity Synthesized from Clay-Reinforced Biobased Chitosan-Polybenzoxazine Nanocomposites [J].
Alhwaige, Almahdi A. ;
Ishida, Hatsuo ;
Qutubuddin, Syed .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2016, 4 (03) :1286-1295
[2]   Nature of the N-Pd Interaction in Nitrogen-Doped Carbon Nanotube Catalysts [J].
Arrigo, Rosa ;
Schuster, Manfred E. ;
Xie, Zailai ;
Yi, Youngmi ;
Wowsnick, Gregor ;
Sun, Li L. ;
Hermann, Klaus E. ;
Friedrich, Matthias ;
Kast, Patrick ;
Haevecker, Michael ;
Knop-Gericke, Axel ;
Schloegl, Robert .
ACS CATALYSIS, 2015, 5 (05) :2740-2753
[3]   Dehydrogenation of Formic Acid at Room Temperature: Boosting Palladium Nanoparticle Efficiency by Coupling with Pyridinic-Nitrogen-Doped Carbon [J].
Bi, Qing-Yuan ;
Lin, Jian-Dong ;
Liu, Yong-Mei ;
He, He-Yong ;
Huang, Fu-Qiang ;
Cao, Yong .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (39) :11849-11853
[4]   MnOx-Promoted PdAg Alloy Nanoparticles for the Additive-Free Dehydrogenation of Formic Acid at Room Temperature [J].
Bulut, Ahmet ;
Yurderi, Mehmet ;
Karatas, Yasar ;
Say, Zafer ;
Kivrak, Hilal ;
Kaya, Murat ;
Gulcan, Mehmet ;
Ozensoy, Emrah ;
Zahmakiran, Mehmet .
ACS CATALYSIS, 2015, 5 (10) :6099-6110
[5]   Nitrogen-Doped Porous Carbon Prepared from Urea Formaldehyde Resins by Template Carbonization Method for Supercapacitors [J].
Chen, Xiang Ying ;
Chen, Chong ;
Zhang, Zhong Jie ;
Xie, Dong Hua ;
Deng, Xiao .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2013, 52 (30) :10181-10188
[6]   Immobilizing Highly Catalytically Active Noble Metal Nanoparticles on Reduced Graphene Oxide: A Non-Noble Metal Sacrificial Approach [J].
Chen, Yao ;
Zhu, Qi-Long ;
Tsumori, Nobuko ;
Xu, Qiang .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (01) :106-109
[7]  
Chen YZ, 2016, GREEN CHEM, V18, P1212, DOI [10.1039/C5GC02530C, 10.1039/c5gc02530c]
[8]   Exceptional size-dependent catalytic activity enhancement in the room-temperature hydrogen generation from formic acid over bimetallic nanoparticles supported by porous carbon [J].
Cheng, Jia ;
Gu, Xiaojun ;
Sheng, Xueli ;
Liu, Penglong ;
Su, Haiquan .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (05) :1887-1894
[9]   Enhanced electrochemical oxygen reduction reaction by restacking of N-doped single graphene layers [J].
Choi, Chang Hyuck ;
Chung, Min Wook ;
Park, Sung Hyeon ;
Woo, Seong Ihl .
RSC ADVANCES, 2013, 3 (13) :4246-4253
[10]   Biomass-Derived Porous Carbon Materials: Synthesis and Catalytic Applications [J].
De, Sudipta ;
Balu, Alina Mariana ;
van der Waal, Jan C. ;
Luque, Rafael .
CHEMCATCHEM, 2015, 7 (11) :1608-1629