A note on the relation between period and energy of periodic orbits near equilibrium points

被引:1
作者
Herrera, E
Herrera, R
机构
[1] Inst Natl Rech Sci, ETE, Chaire Hydrol Stat, St Foy, PQ G1V 4C7, Canada
[2] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
关键词
D O I
10.1088/0951-7715/16/5/319
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the growth of the periods of periodic solutions of ordinary differential equations which are arbitrarily close to an isolated equilibrium point. More precisely, we estimate the period of periodic orbits near a completely degenerate equilibrium point (the derivative of the vector field at the equilibrium point is identically zero) and show that it tends to infinity as the amplitude of the orbits tends to zero. Based on this, we give estimates on the relation of the period and the energy of periodic orbits near singular points in Hamiltonian systems.
引用
收藏
页码:1869 / 1874
页数:6
相关论文
共 10 条
[1]  
ARNOLD VI, 1989, TEXTS MATH, V60
[2]  
Borsuk K., 1947, ANN SOC POLONAISE, V20, P251
[3]  
CHAPERON M, 1994, 27 NAT C MEX MATH SO, P79
[4]  
CHAPERON M, 1995, APORTACIONES MAT COM, V16
[5]  
GORDON WB, 1969, J MATH MECH, V19, P111
[6]  
HERRERA R, 1995, APORTACIONES MAT COM, V16
[7]  
HERRERA R, 1994, 27 NAT C MEX MATH SO, P209
[8]  
Lewis D. C., 1955, P AM MATH SOC, V6, P181, DOI [10.1090/S0002-9939-1955-0070805-0, DOI 10.1090/S0002-9939-1955-0070805-0]
[9]   LAGRANGIAN SUBMANIFOLDS AND HAMILTONIAN SYSTEMS [J].
WEINSTEIN, A .
ANNALS OF MATHEMATICS, 1973, 98 (03) :377-410
[10]  
Wintner A., 1941, PRINCETON MATH SERIE, V5