Hybrid System Identification by Incremental Fuzzy C-regression Clustering

被引:1
作者
Blazic, Saso [1 ]
Skrjanc, Igor [1 ]
机构
[1] Univ Ljubljana, Fac Elect Engn, Ljubljana, Slovenia
来源
2020 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE) | 2020年
关键词
Incremental clustering; Fuzzy C-regression clustering; Hybrid systems; Local model; Stream data; Identification; INFERENCE SYSTEM; NEURAL-NETWORKS; EVOLVING FUZZY; MODELS; CLASSIFICATION; NORMS;
D O I
10.1109/fuzz48607.2020.9177678
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, an approach to the identification of hybrid systems is discussed. It is based on the incremental fuzzy C-regression clustering. Based on the distance between the current measurement and the hyperplane of the local model, local models are updated. If necessary, a new local model is constructed. To increase the robustness and prevent false local models, the data are kept in the buffer temporarily. The approach produces good results as shown in two examples. The first example can be modelled as a piecewise affine dynamical system and the second one as a switched dynamical system.
引用
收藏
页数:7
相关论文
共 52 条
[1]   Fuzzy model-based predictive control by instantaneous linearization [J].
Abonyi, J ;
Nagy, L ;
Szeifert, F .
FUZZY SETS AND SYSTEMS, 2001, 120 (01) :109-122
[2]   Robust evolving controller for simulated surge tank and for real two-tank plant [J].
Andonovski, Goran ;
Costa, Bruno Sielly Jales ;
Biazic, Saso ;
Skrjanc, Igor .
AT-AUTOMATISIERUNGSTECHNIK, 2018, 66 (09) :725-734
[3]   Evolving model identification for process monitoring and prediction of non-linear systems [J].
Andonovski, Goran ;
Music, Gasper ;
Blazic, Saso ;
Skrjanc, Igor .
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2018, 68 :214-221
[4]  
Andonovski G, 2017, PROCEEDINGS OF THE 2017 EVOLVING AND ADAPTIVE INTELLIGENT SYSTEMS (EAIS)
[5]   An approach for fuzzy rule-base adaptation using on-line clustering [J].
Angelov, P .
INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2004, 35 (03) :275-289
[6]  
Angelov P., 2010, EVOLVING INTELLIGENT, V12, P21, DOI [10.1002/9780470569962.ch2, DOI 10.1002/9780470569962.CH2]
[7]   Evolving fuzzy systems from data streams in real-time [J].
Angelov, Plamen ;
Zhou, Xiaowei .
2006 INTERNATIONAL SYMPOSIUM ON EVOLVING FUZZY SYSTEMS, PROCEEDINGS, 2006, :29-+
[8]  
Angelov P, 2013, IEEE CONF EVOL ADAPT, P1, DOI 10.1109/EAIS.2013.6604098
[9]   An approach to Online identification of Takagi-Suigeno fuzzy models [J].
Angelov, PP ;
Filev, DP .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2004, 34 (01) :484-498
[10]   Structure identification of generalized adaptive neuro-fuzzy inference systems [J].
Azeem, MF ;
Hanmandlu, M ;
Ahmad, N .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2003, 11 (05) :666-681