An improvement of the asymptotic iteration method for exactly solvable eigenvalue problems

被引:19
作者
Boztosun, I. [1 ]
Karakoc, M. [1 ]
机构
[1] Erciyes Univ, Dept Phys, Fac Arts & Sci, Kayseri, Turkey
关键词
D O I
10.1088/0256-307X/24/11/004
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We derive a formula that simplifies the original asymptotic iteration method formulation to find the energy eigenvalues for the analytically solvable cases. We then show that there is a connection between the asymptotic iteration and the Nikiforov-Uvarov methods, which both solve the second order linear ordinary differential equations analytically.
引用
收藏
页码:3028 / 3031
页数:4
相关论文
共 50 条
[31]   ON QUASI-EXACTLY SOLVABLE PROBLEMS AND SUPERSYMMETRY [J].
ROY, P ;
VARSHNI, YP .
MODERN PHYSICS LETTERS A, 1991, 6 (14) :1257-1260
[32]   Method of constructing exactly solvable chaos [J].
Umeno, K .
PHYSICAL REVIEW E, 1997, 55 (05) :5280-5284
[33]   Method of constructing exactly solvable chaos [J].
Umeno, Ken .
Physical Review E. Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1997, 55 (5-A pt A)
[34]   On spectral asymptotic of quasi-exactly solvable quartic potential [J].
Boris Shapiro ;
Miloš Tater .
Analysis and Mathematical Physics, 2022, 12
[35]   An exactly solvable problem of wave fronts and applications to the asymptotic theory [J].
Brezhnev, Yu. V. ;
Tsvetkova, A. V. .
PHYSICA D-NONLINEAR PHENOMENA, 2021, 419
[36]   On spectral asymptotic of quasi-exactly solvable quartic potential [J].
Shapiro, Boris ;
Tater, Milos .
ANALYSIS AND MATHEMATICAL PHYSICS, 2022, 12 (01)
[37]   Variational method for precise asymptotic formulas for nonlinear eigenvalue problems [J].
Shibata T. .
Results in Mathematics, 2004, 46 (1-2) :130-145
[38]   An adaptive finite element method with asymptotic saturation for eigenvalue problems [J].
C. Carstensen ;
J. Gedicke ;
V. Mehrmann ;
A. Międlar .
Numerische Mathematik, 2014, 128 :615-634
[39]   An adaptive finite element method with asymptotic saturation for eigenvalue problems [J].
Carstensen, C. ;
Gedicke, J. ;
Mehrmann, V. ;
Miedlar, A. .
NUMERISCHE MATHEMATIK, 2014, 128 (04) :615-634
[40]   ASYMPTOTIC RATE OF CONVERGENCE OF THE METHOD OF STEEPEST DESCENT IN EIGENVALUE PROBLEMS [J].
ZHUK, PF .
USSR COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 1984, 24 (02) :175-177